LLM-Guard项目配置升级:从setup.py到pyproject.toml的最佳实践
在Python项目开发中,项目配置管理是一个重要的环节。传统上,Python项目使用setup.py文件来定义项目元数据和依赖关系。然而,随着Python生态系统的演进,pyproject.toml正逐渐成为新的标准配置方式。
LLM-Guard项目近期完成了从setup.py到pyproject.toml的迁移,这一变更带来了多项改进。pyproject.toml作为PEP 517和PEP 518引入的新标准,提供了更清晰、更强大的项目配置能力。它不仅可以定义项目元数据,还能明确指定构建系统的要求,解决了传统setup.py的一些局限性。
此次升级中,LLM-Guard项目还优化了依赖管理策略。原先使用严格版本约束(==)的依赖项现在大多改为使用更灵活的版本约束(>=)。这种改变有助于减少与其他Python包的冲突,提高项目的兼容性。不过对于像torch这样确实需要特定版本的核心依赖,项目仍然保留了精确版本控制。
pyproject.toml的采用使得项目构建过程更加标准化和可重现。构建工具如pip和build现在可以直接读取pyproject.toml中的配置信息,包括项目描述、依赖关系和版本号等,无需维护重复的配置信息。这种集中化的配置管理减少了维护负担,也降低了出错的可能性。
对于开发者而言,这一变更意味着更简单的贡献流程和更一致的开发环境。新贡献者不再需要担心构建系统的细节,因为所有必要的构建依赖都已在pyproject.toml中明确定义。这也使得项目更容易集成到现代Python工作流和持续集成系统中。
LLM-Guard项目的这一配置升级体现了Python社区的最佳实践演进,展示了开源项目如何通过采纳新技术标准来提高项目的可维护性和用户体验。对于其他Python项目而言,这提供了一个很好的参考案例,展示了如何平滑过渡到现代Python项目配置体系。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00