Seurat中基于混合特征图提取特定细胞的技术解析
2025-07-02 15:24:17作者:段琳惟
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R包。其中FeaturePlot功能可以可视化基因表达模式,特别是当设置blend=TRUE参数时,能够同时展示两个基因的表达情况并通过颜色混合来显示共表达区域。本文将详细介绍如何从这种混合特征图中提取特定颜色范围内的细胞条形码。
混合特征图的原理
当使用FeaturePlot并设置blend=TRUE时,Seurat会生成三个图:
- 第一个基因的表达图
- 第二个基因的表达图
- 两个基因的混合表达图
混合图使用颜色混合来表示基因共表达情况:
- 红色表示第一个基因高表达
- 绿色表示第二个基因高表达
- 黄色表示两个基因共表达
- 黑色表示两个基因均低表达
提取特定颜色范围细胞的方法
方法一:基于原始表达数据过滤
最直接的方法是直接从Seurat对象中提取基因表达数据并进行过滤:
cells_of_interest <- FetchData(object = seurat_obj,
vars = c("gene1", "gene2")) %>%
filter(gene1 > threshold1 & gene2 < threshold2) %>%
rownames()
这种方法简单直接,但需要用户自行设定表达阈值。
方法二:从ggplot对象中提取颜色信息
如果需要基于可视化效果中的颜色来筛选细胞,可以从ggplot对象中提取颜色信息:
# 生成混合特征图
p1 <- FeaturePlot(seurat_obj, features = c("gene1", "gene2"), blend = TRUE)
# 提取第三个图(混合图)的构建信息
p_build <- ggplot_build(p1[[3]])
# 获取颜色数据和对应的细胞条形码
color_data <- p_build$data[[1]]
barcodes <- rownames(p_build$plot$data)
# 将条形码与颜色数据关联
rownames(color_data) <- barcodes
这样可以得到每个细胞对应的颜色值,然后可以根据颜色范围进一步筛选。
技术注意事项
-
颜色表示的局限性:混合图中的颜色是基于表达值的分箱结果,可能与实际表达水平不完全对应。高表达基因可能会在视觉上掩盖低表达基因的效果。
-
阈值选择的科学性:建议基于生物学意义或统计方法(如表达分布)设置阈值,而非仅依赖可视化效果。
-
多基因共表达分析:对于更复杂的多基因共表达分析,可考虑使用模块评分或其他计算方法。
实际应用建议
在实际分析中,推荐结合以下方法:
- 先使用混合特征图进行可视化观察
- 基于观察结果设定合理的表达阈值
- 使用FetchData提取符合阈值条件的细胞
- 必要时验证提取细胞的生物学特性
这种方法组合既能利用可视化的直观性,又能保证数据分析的科学性和可重复性。
通过以上方法,研究人员可以更精确地从Seurat混合特征图中识别和提取具有特定表达模式的细胞群体,为后续的差异分析和功能研究奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1