Seurat中基于混合特征图提取特定细胞的技术解析
2025-07-02 02:13:25作者:段琳惟
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R包。其中FeaturePlot功能可以可视化基因表达模式,特别是当设置blend=TRUE参数时,能够同时展示两个基因的表达情况并通过颜色混合来显示共表达区域。本文将详细介绍如何从这种混合特征图中提取特定颜色范围内的细胞条形码。
混合特征图的原理
当使用FeaturePlot并设置blend=TRUE时,Seurat会生成三个图:
- 第一个基因的表达图
- 第二个基因的表达图
- 两个基因的混合表达图
混合图使用颜色混合来表示基因共表达情况:
- 红色表示第一个基因高表达
- 绿色表示第二个基因高表达
- 黄色表示两个基因共表达
- 黑色表示两个基因均低表达
提取特定颜色范围细胞的方法
方法一:基于原始表达数据过滤
最直接的方法是直接从Seurat对象中提取基因表达数据并进行过滤:
cells_of_interest <- FetchData(object = seurat_obj,
vars = c("gene1", "gene2")) %>%
filter(gene1 > threshold1 & gene2 < threshold2) %>%
rownames()
这种方法简单直接,但需要用户自行设定表达阈值。
方法二:从ggplot对象中提取颜色信息
如果需要基于可视化效果中的颜色来筛选细胞,可以从ggplot对象中提取颜色信息:
# 生成混合特征图
p1 <- FeaturePlot(seurat_obj, features = c("gene1", "gene2"), blend = TRUE)
# 提取第三个图(混合图)的构建信息
p_build <- ggplot_build(p1[[3]])
# 获取颜色数据和对应的细胞条形码
color_data <- p_build$data[[1]]
barcodes <- rownames(p_build$plot$data)
# 将条形码与颜色数据关联
rownames(color_data) <- barcodes
这样可以得到每个细胞对应的颜色值,然后可以根据颜色范围进一步筛选。
技术注意事项
-
颜色表示的局限性:混合图中的颜色是基于表达值的分箱结果,可能与实际表达水平不完全对应。高表达基因可能会在视觉上掩盖低表达基因的效果。
-
阈值选择的科学性:建议基于生物学意义或统计方法(如表达分布)设置阈值,而非仅依赖可视化效果。
-
多基因共表达分析:对于更复杂的多基因共表达分析,可考虑使用模块评分或其他计算方法。
实际应用建议
在实际分析中,推荐结合以下方法:
- 先使用混合特征图进行可视化观察
- 基于观察结果设定合理的表达阈值
- 使用FetchData提取符合阈值条件的细胞
- 必要时验证提取细胞的生物学特性
这种方法组合既能利用可视化的直观性,又能保证数据分析的科学性和可重复性。
通过以上方法,研究人员可以更精确地从Seurat混合特征图中识别和提取具有特定表达模式的细胞群体,为后续的差异分析和功能研究奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178