Fugue项目Spark性能基准测试深度解析
2025-06-10 13:55:51作者:范垣楠Rhoda
引言
在大数据处理领域,性能始终是开发者最关心的问题之一。Fugue作为一个分布式计算抽象层,其在Spark上的性能表现如何?本文将通过三个典型场景的基准测试,深入分析Fugue在Spark上的性能特点,帮助开发者理解在不同场景下如何选择最佳实现方式。
测试环境配置
- 运行环境:Databricks Runtime 10.1 (Scala 2.12, Spark 3.2.0)
- 集群配置:1个i3.xlarge驱动节点和8个i3.xlarge工作节点
- 测试数据集:
- 基础数据集:1000万行
- 扩展数据集:4000万行
- 超大数据集:2亿行
- 多分区数据集:20000个分区
测试案例一:累积概率计算
场景分析
这是一个典型的映射(Map)问题,无法用标准SQL直接实现。我们比较了以下实现方式:
- 原生Spark逐行UDF
- Fugue封装的原生Spark实现
- Pandas UDF
- Fugue封装的Pandas UDF实现
性能表现
关键发现:
- Fugue封装的原生Spark实现比逐行UDF快9-10倍
- 使用Pandas UDF时,Fugue的额外开销小于0.1秒
- Pandas UDF确实展现出显著性能优势
技术解析
Fugue之所以能在原生Spark上实现如此显著的性能提升,主要归功于其对Spark封装逻辑的深度优化。值得注意的是:
- Python函数输入输出数据类型会影响性能
- 数据转换(从Spark Rows到Pandas DataFrame)会增加开销
- 使用Pandas进行计算会减少开销
- 分布式系统性能不如本地系统稳定
测试案例二:减去均值
场景设计
这是一个分组应用(Groupby-Apply)问题,我们设计了多种测试场景:
- 基础计算
- 增加计算时长(每个分区处理前休眠0.5秒)
- 增加分区数量
- 增加每个分区的数据量
性能表现
关键发现:
- Fugue封装的原生Spark比逐行UDF快2倍以上
- 使用Pandas UDF时,Fugue的开销不明显
- 计算时间越长,Pandas UDF的速度优势越小
- 相同数据量下,更多分区意味着更长的处理时间
SQL解决方案
这个场景实际上可以通过SQL优雅解决:
m = SELECT id, AVG(v) AS mean FROM df GROUP BY id
SELECT df.id, df.v-mean AS v FROM df INNER JOIN m ON df.id = m.id
重要经验:尽可能让Spark计算保持在JVM中执行。
测试案例三:加一操作
场景分析
这个简单操作为我们提供了比较Pandas UDF和SQL解决方案的机会。
性能表现
核心结论再次验证了之前的经验:尽可能保持Spark计算在JVM中。
深度技术建议
-
实现选择策略:
- 能用SQL解决的问题优先使用SQL
- 复杂逻辑考虑Pandas UDF
- 避免使用逐行UDF
-
性能优化方向:
- 减少数据在Python和JVM之间的转换
- 合理设置分区数量
- 考虑计算与数据传输的开销平衡
-
Fugue最佳实践:
- 对于简单转换,Fugue SQL是最佳选择
- 对于复杂业务逻辑,Fugue+Pandas UDF组合提供了良好平衡
- 避免在不必要的情况下使用逐行处理
项目哲学与定位
Fugue的核心价值在于:
- 简化分布式计算
- 提供一致的编程接口
- 使开发者能充分利用现有计算资源
项目定位明确:Fugue专注于优化实际用例的简单性、可测试性和逻辑独立性,而非参与性能基准竞赛。虽然封装逻辑不可避免地会带来一定性能开销,但团队持续努力在提供核心价值的同时最小化这种开销。
结语
通过这三个典型案例的测试分析,我们可以清晰地看到Fugue在Spark上的性能表现及其优化方向。理解这些性能特点,将帮助开发者在实际项目中做出更合理的技术选型,在开发效率和执行性能之间找到最佳平衡点。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111