Outlines项目中基于部分JSON/List的生成技术解析
2025-05-20 22:03:47作者:晏闻田Solitary
在软件开发过程中,我们经常遇到需要根据已有数据结构自动补全剩余内容的需求。Outlines项目提供了一种优雅的解决方案,能够基于部分完成的JSON数组或列表继续生成符合特定模式的内容。
问题背景
假设我们有一个BaseTask类定义,包含任务状态和描述两个字段。开发场景中,我们可能已经手动定义了几个BaseTask实例,如[BaseTask1, BaseTask2,然后希望模型能够自动补全剩余的列表内容,生成更多符合BaseTask模式的任务项。
技术实现方案
Outlines项目通过组合使用生成选择器和JSON生成器,实现了这一功能。核心思路是:
- 创建两个生成器:一个用于判断是否继续生成(选择", "或"]"),另一个用于生成符合BaseTask模式的JSON对象
- 在循环中交替使用这两个生成器,逐步构建完整的列表
代码实现详解
# 定义生成选择器,决定是继续添加元素还是结束列表
gen_choice = generate.choice(model, [", ", "]"])
# 定义JSON生成器,用于生成符合BaseTask模式的对象
gen_task = generate.json(model, BaseTask)
# 初始部分完成的列表
prompt = "[BaseTask1, BaseTask"
while True:
# 决定是继续添加还是结束
result = gen_choice(prompt)
if result == "]":
# 如果选择结束,则补全列表闭合
return prompt + "]"
else:
# 否则添加分隔符并生成新任务
prompt += ", "
result = gen_task(prompt)
prompt += result
技术优势
这种实现方式有几个显著优点:
- 灵活性:可以处理任意长度的列表补全,不受预设长度限制
- 可控性:每次迭代都明确检查是否应该继续生成,避免无限循环
- 类型安全:生成的每个新元素都严格符合BaseTask的模式定义
- 可扩展性:可以轻松调整用于其他类似的列表补全场景
应用场景
这种技术特别适用于以下场景:
- 任务列表的自动补全
- 测试数据的批量生成
- 用户输入的部分自动完成
- 交互式应用的渐进式内容生成
未来展望
随着项目发展,这种模式可能会被进一步抽象和优化,比如通过更高层次的API封装,使开发者能够更简洁地表达"继续这个列表"的意图,而不必手动管理生成循环。这将使代码更加清晰,同时保持相同的灵活性和控制力。
通过这种技术,开发者可以更高效地处理部分结构化数据的自动补全需求,提升开发体验和应用程序的智能程度。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
403
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219