Apache APISIX 中从 Cookie 读取 Token 并设置 Authorization 头的实现方法
背景介绍
在现代 Web 应用和 API 开发中,身份验证是一个至关重要的环节。Apache APISIX 作为一款高性能的 API 网关,提供了多种身份验证机制。其中,基于 OpenID Connect 的认证方式因其标准化和安全性而广受欢迎。
问题场景
在实际应用中,我们经常会遇到这样的需求:客户端通过 Cookie 传递访问令牌(Token),而服务端验证则需要通过标准的 Authorization 头来获取这个令牌。这种设计模式常见于:
- 浏览器端应用通过 HTTP-only Cookie 安全地存储令牌
- 需要遵循 OAuth2/OpenID Connect 规范的 API 服务
- 需要同时支持 Cookie 和 Header 两种认证方式的系统
解决方案
Apache APISIX 提供了灵活的插件机制来解决这类需求。我们可以利用 serverless-pre-function 插件在请求处理流程的早期阶段,从 Cookie 中提取令牌并设置到 Authorization 头中。
实现步骤
-
使用 serverless-pre-function 插件:这个插件允许我们在请求处理流程的早期阶段执行自定义 Lua 代码。
-
访问 Cookie 值:通过
ngx.var.cookie_NAME语法可以获取指定名称的 Cookie 值。 -
设置请求头:使用 APISIX 核心库的
core.request.set_header方法设置 Authorization 头。
配置示例
以下是一个完整的路由配置示例,展示了如何从名为 "token" 的 Cookie 中读取值,并将其设置为 Bearer Token:
{
"plugins": {
"serverless-pre-function": {
"functions": [
"return function (conf, ctx) local core = require(\"apisix.core\"); core.request.set_header(ctx, \"Authorization\", \"Bearer \" .. ngx.var.cookie_token); end"
]
},
"openid-connect": {
// OpenID Connect 插件配置
}
},
// 其他路由配置
}
实现原理
-
执行顺序:serverless-pre-function 插件默认优先级为 10000,而 openid-connect 插件优先级为 2599,这确保了我们的自定义逻辑会在认证之前执行。
-
Lua 代码解析:
- 首先引入 APISIX 核心模块
- 通过
ngx.var.cookie_token获取名为 "token" 的 Cookie 值 - 使用
core.request.set_header方法设置 Authorization 头 - 按照 Bearer Token 的格式拼接字符串
-
安全考虑:这种实现方式不会暴露 Cookie 值给后端服务,保持了前后端分离架构的安全性。
扩展应用
这种模式不仅可以用于 OpenID Connect 认证,还可以应用于:
- 将多种认证方式统一为标准格式
- 实现认证方式的降级处理(如从 Cookie 回退到 Header)
- 在网关层实现认证信息的转换和增强
最佳实践
-
错误处理:在实际生产环境中,应该添加对 Cookie 不存在的错误处理。
-
日志记录:建议添加适当的日志记录,便于调试和审计。
-
性能考虑:虽然 Lua 代码执行效率很高,但仍应保持逻辑简洁。
-
安全加固:可以添加对 Cookie 值的验证,防止注入攻击。
总结
通过 Apache APISIX 的插件机制,我们可以灵活地处理各种认证场景。从 Cookie 读取 Token 并设置 Authorization 头只是其中一个典型应用。这种方案既保持了浏览器端的安全性(使用 HTTP-only Cookie),又满足了标准 API 认证的要求,是现代化应用架构中的理想选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00