Module Federation核心库中控制入口点参与联邦的方法
Module Federation作为现代前端架构中实现微前端和代码共享的重要技术,其核心库提供了强大的模块共享能力。在实际项目中,开发者可能会遇到需要精细控制哪些入口点(entrypoints)参与模块联邦的需求。
问题背景
在典型的Module Federation应用场景中,项目可能包含多个入口点,其中某些入口点可能仅作为路由调度器或轻量级加载器使用,并不需要参与模块共享。默认情况下,Module Federation插件会向所有入口点注入运行时代码和共享依赖,这可能导致不必要的代码体积增加。
技术解决方案
Module Federation核心库提供了两种主要方式来解决这一问题:
-
入口点过滤配置:通过
entries或excludeEntries数组参数,开发者可以明确指定哪些入口点应该参与联邦。 -
运行时提升实验特性:通过启用
experiments.federationRuntime选项,可以将联邦运行时代码提升到单独的runtime chunk中,避免重复注入到每个入口点。
实现细节
入口点过滤配置
开发者可以在ModuleFederationPlugin配置中明确指定参与联邦的入口点:
new ModuleFederationPlugin({
entries: ['app1', 'app2'] // 仅这些入口点参与联邦
})
或者使用排除法:
new ModuleFederationPlugin({
excludeEntries: ['loader'] // 排除特定入口点
})
运行时提升特性
在Webpack环境下,可以通过以下配置启用运行时提升:
experiments: {
federationRuntime: true
}
这一特性会将联邦相关的运行时代码集中到一个单独的runtime chunk中,而不是在每个入口点重复注入,从而显著减少不必要的代码体积。
注意事项
-
当前Rspack构建工具尚未完全支持运行时提升特性,开发者需要注意构建工具的兼容性。
-
使用入口点过滤时,需要确保被排除的入口点确实不需要任何联邦功能,否则可能导致运行时错误。
-
在微前端架构中,主应用通常需要保留联邦功能以加载子应用,而简单的路由调度器则可以考虑排除。
最佳实践
对于包含多个入口点的大型项目,建议:
-
首先分析各入口点的实际需求,明确哪些需要联邦功能
-
优先考虑使用运行时提升特性,这是最彻底的优化方案
-
对于确实不需要任何联邦功能的入口点,再考虑使用入口点过滤配置
-
定期检查构建输出,确保优化配置达到了预期效果
通过合理运用这些技术,开发者可以在享受Module Federation强大功能的同时,保持应用的轻量和高效。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00