Self-LLM项目多卡微调GLM-4模型时的设备一致性解决方案
2025-05-15 23:19:07作者:冯爽妲Honey
问题背景
在使用Self-LLM项目进行GLM-4模型微调时,当尝试使用多张GPU进行训练时,系统会报出设备不一致的错误。具体表现为模型计算损失函数时,部分张量分布在不同的GPU设备上(如cuda:3和cuda:1),导致无法正常完成交叉熵损失计算。
错误分析
该问题的根本原因是模型在分布式训练环境下,不同部分的计算被自动分配到了不同的GPU设备上,但损失计算时未能确保所有参与计算的张量位于同一设备。这种情况在使用device_map="auto"参数时尤为常见,因为该参数会自动优化模型各层在不同设备间的分布。
解决方案
经过深入分析,发现需要在计算损失函数前显式确保所有张量位于同一设备。具体修改方案如下:
-
定位到模型文件中的损失计算部分(通常在modeling_chatglm.py文件中,约1020行附近)
-
原始代码如下:
if labels is not None:
lm_logits = lm_logits.to(torch.float32)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
- 修改后的代码:
if labels is not None:
lm_logits = lm_logits.to(torch.float32)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# 新增设备同步代码
device = shift_labels.device
shift_logits = shift_logits.to(device)
shift_labels = shift_labels.to(device)
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
技术原理
这种修改确保了在计算交叉熵损失前:
- 获取标签张量所在的设备
- 将预测logits显式移动到同一设备
- 确保标签张量也在同一设备
这种处理方式在多GPU环境下尤为重要,因为:
- 模型的不同层可能被自动分配到不同GPU上
- 损失计算需要所有输入张量位于同一设备
- 显式设备同步可以避免隐式的跨设备数据传输
其他注意事项
-
虽然使用
device_map="cuda"可以暂时规避这个问题,但这会限制模型只能使用单卡,无法发挥多GPU的并行计算优势。 -
对于大规模模型训练,推荐使用这种显式设备同步的方式,因为它:
- 保持多卡并行能力
- 明确控制张量位置
- 提高代码可读性和可维护性
-
在实际应用中,还可以考虑使用PyTorch的分布式训练工具(如DistributedDataParallel)来更好地管理多GPU训练过程。
总结
通过这种简单的代码修改,我们成功解决了Self-LLM项目中GLM-4模型多卡微调时的设备不一致问题。这种解决方案不仅适用于GLM-4模型,对于其他需要多GPU训练的大语言模型也具有参考价值,是进行分布式模型训练时的一个实用技巧。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19