React Native Worklets Core 项目下载与安装教程
1. 项目介绍
React Native Worklets Core 是一个用于在 React Native 应用中运行 JavaScript 函数(称为 "Worklets")的库,能够在单独的线程上执行,从而提高应用性能和响应速度。这个库通常不作为独立依赖使用,而是作为其他模块如 react-native-vision-camera、react-native-wishlist 或 react-native-skia 的同伴依赖。
2. 项目下载位置
本项目托管在 GitHub 上,项目地址为:https://github.com/margelo/react-native-worklets-core.git
3. 项目安装环境配置
在开始安装之前,请确保你的开发环境中已经安装了以下工具:
- Node.js
- npm 或 yarn 包管理器
- React Native 开发环境
以下是一个典型的环境配置流程:
安装 Node.js 和 npm/yarn
首先,确保你的系统上安装了 Node.js 和 npm/yarn。可以通过在终端运行以下命令来检查安装情况:
node -v
npm -v
# 或者
yarn -v
如果没有安装或版本不符合要求,请访问 Node.js 官网下载安装。
安装 React Native CLI
在终端中运行以下命令来安装 React Native CLI:
npm install -g react-native-cli
# 或者
yarn global add react-native-cli
创建 React Native 项目
创建一个新的 React Native 项目,以便进行 Worklets Core 的集成测试:
npx react-native init MyNewProject
cd MyNewProject
环境配置示例
以下是安装 Node.js 的界面示例(假设使用包管理器):

以下是 React Native CLI 安装成功的终端输出示例:

4. 项目安装方式
在已经配置好的 React Native 项目中,通过以下命令将 React Native Worklets Core 库安装为依赖:
npm install react-native-worklets-core
# 或者
yarn add react-native-worklets-core
安装完成后,需要在 Babel 配置文件中添加相应的插件。在项目根目录下的 babel.config.js 文件中添加以下内容:
module.exports = {
plugins: [
["react-native-worklets-core/plugin"],
],
};
然后重启 Metro 并清理缓存:
yarn start --reset-cache
5. 项目处理脚本
在项目的 package.json 文件中,可以添加一些脚本来简化项目的构建和运行流程。例如:
{
"scripts": {
"start": "react-native start",
"build": "react-native run-android",
"test": "jest"
}
}
这样,你就可以通过运行 yarn start 来启动项目,yarn build 来构建应用,或者 yarn test 来运行测试。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00