ADetailer项目中的PyTorch 2.6模型加载问题分析与解决方案
问题背景
在深度学习领域,模型加载是一个基础但至关重要的环节。近期,ADetailer项目用户在使用PyTorch 2.6版本(特别是支持CUDA 12.8的版本)时遇到了一个特殊的技术问题:YOLO模型在首次加载时可以正常工作,但在后续尝试重新加载时却会失败。
问题现象
当用户设置批量生成图像(如Batch count=10,Batch size=1)时,第一个图像生成过程中YOLO模型能够正常加载并执行检测任务。然而,从第二个图像开始,系统就会抛出UnpicklingError错误,提示权重加载失败。
错误信息明确指出,这是由于PyTorch 2.6版本中默认的unpickling机制发生了变化。系统检测到ultralytics.nn.tasks.SegmentationModel这个全局变量不在默认允许的列表中,因此拒绝加载。
技术分析
PyTorch 2.6引入了一个重要的安全特性:默认情况下,torch.load()会使用weights_only=True参数,这限制了可以反序列化的对象类型。这种改变旨在防止潜在的恶意代码执行,但也带来了一些兼容性问题。
在ADetailer项目中,YOLO模型使用了ultralytics库中的SegmentationModel类,这个类不在PyTorch默认的安全全局变量列表中。首次加载成功而后续加载失败的现象,可能与Python的模块缓存机制有关。
解决方案
针对这个问题,社区提出了几种解决方案:
-
临时解决方案:使用mediapipe模型替代YOLO模型(如mediapipe_face_full或mediapipe_face_mesh)。这些模型不受PyTorch 2.6变化的影响,但功能上有所限制,仅支持面部检测,且检测质量可能不如YOLO模型。
-
兼容性解决方案:修改代码,在加载模型时显式设置weights_only=False。这种方法恢复了PyTorch 2.6之前的行为,但需要注意潜在的安全风险,应确保模型来源可信。
-
标准解决方案:使用torch.serialization.add_safe_globals()或torch.serialization.safe_globals()上下文管理器,将SegmentationModel类添加到安全全局变量列表中。这是官方推荐的方法,既保证了安全性又解决了兼容性问题。
实施建议
对于大多数用户,推荐采用第三种标准解决方案。这种方法既符合PyTorch的安全设计理念,又能确保功能完整。项目维护者已经通过PR #769实现了这一修复,用户只需更新到最新版本即可解决问题。
对于暂时无法更新的用户,可以按照以下步骤手动应用修复:
- 定位到模型加载代码部分
- 在加载前添加安全全局变量声明
- 确保所有相关类都被正确列入白名单
总结
PyTorch版本升级带来的安全改进有时会与现有项目产生兼容性问题。ADetailer项目遇到的这个案例很好地展示了如何在安全性和功能性之间找到平衡点。通过理解PyTorch的安全机制并正确使用其提供的API,开发者可以确保项目在新版本框架下稳定运行。
这个问题也提醒我们,在深度学习项目开发中,需要特别关注框架版本升级可能带来的影响,并及时调整代码以适应新的安全规范。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00