React Native Windows新架构下Async Storage模块的兼容性问题解析
问题背景
在使用React Native Windows新架构(New Architecture)开发Windows桌面应用时,开发者遇到了Async Storage模块的兼容性问题。当项目启用新架构特性后,安装Async Storage模块会导致构建失败,出现MSBuild循环依赖错误。
错误现象
构建过程中会抛出以下关键错误信息:
error MSB4006: There is a circular dependency in the target dependency graph involving target "CppWinRTComputeGetResolvedWinMD"
这个错误表明在Windows平台的构建系统中出现了目标依赖图的循环引用问题,特别是在处理C++/WinRT相关编译任务时。
技术分析
根本原因
-
新架构与模块兼容性:React Native Windows的新架构采用了完全不同的原生模块接口设计,部分第三方模块可能尚未完全适配。
-
C++/WinRT编译问题:错误指向Microsoft.Windows.CppWinRT.targets文件,说明问题出在Windows运行时组件(C++/WinRT)的编译阶段。
-
构建系统冲突:新架构的构建流程与Async Storage模块的Windows实现存在不兼容,导致MSBuild无法正确解析依赖关系。
临时解决方案
经过验证,目前有以下两种可行的临时解决方案:
-
通过Visual Studio直接构建:
- 在项目根目录运行
yarn start启动Metro服务 - 使用Visual Studio 2022打开解决方案文件(.sln)
- 从VS中直接构建和运行应用
- 在项目根目录运行
-
多次运行CLI命令:
- 首次运行
npx react-native run-windows可能会失败 - 立即再次运行相同命令,第二次通常能够成功构建
- 首次运行
深入技术细节
Windows新架构特点
React Native Windows新架构引入了以下关键变化:
- 使用TurboModules替代传统的原生模块系统
- 采用Fabric渲染器替代旧架构
- 完全重写的C++实现核心
这些变化要求所有原生模块都必须实现新的接口规范,否则会出现兼容性问题。
Async Storage的特殊性
Async Storage作为数据持久化解决方案:
- 在Windows平台依赖WinRT API实现
- 需要处理应用沙箱环境下的文件访问
- 涉及复杂的异步操作和线程管理
这些特性使其在新架构下的适配工作更具挑战性。
最佳实践建议
-
开发环境配置:
- 确保使用Visual Studio 2022最新版本
- 安装所有必要的Windows SDK组件
- 保持Node.js和Yarn/npm的版本更新
-
项目设置技巧:
- 在package.json中明确指定模块版本
- 定期清理node_modules和构建缓存
- 考虑使用yarn resolutions锁定依赖版本
-
调试建议:
- 添加
--logging参数获取详细错误信息 - 检查构建日志中的警告信息
- 对比新旧架构下的构建流程差异
- 添加
未来展望
微软团队已经确认这是一个已知问题,并正在积极修复中。随着React Native Windows生态的成熟,预计这类兼容性问题将逐步减少。开发者可以关注官方更新日志,及时获取修复版本。
对于关键业务项目,建议:
- 建立完善的CI/CD流程处理构建问题
- 考虑实现模块的备用方案
- 参与社区讨论贡献解决方案
通过理解这些技术细节和解决方案,开发者可以更顺利地在新架构项目中使用Async Storage模块,确保应用的数据持久化功能正常工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00