AWS Deep Learning Containers发布PyTorch 2.6.0推理镜像
AWS Deep Learning Containers(DLC)是AWS官方提供的深度学习容器镜像服务,它预装了主流深度学习框架及其依赖项,帮助开发者快速部署深度学习应用。这些容器镜像经过AWS优化,可直接在EC2等AWS计算服务上运行,大幅简化了深度学习环境的配置过程。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.6.0推理专用镜像,支持Python 3.12环境。本次更新包含CPU和GPU两个版本,均基于Ubuntu 22.04操作系统构建。
CPU版本镜像特性
CPU版本镜像(pytorch-inference:2.6.0-cpu-py312-ubuntu22.04-ec2)主要面向不需要GPU加速的推理场景。该镜像包含了PyTorch 2.6.0 CPU版本及其核心生态系统组件:
- 核心框架:PyTorch 2.6.0+cpu
- 计算机视觉支持:torchvision 0.21.0+cpu
- 音频处理支持:torchaudio 2.6.0+cpu
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
- 科学计算库:NumPy 2.2.3和SciPy 1.15.2
- 图像处理:OpenCV 4.11.0和Pillow 11.1.0
该镜像还预装了Intel MKL 2025.0.1数学核心库,可显著提升CPU上的矩阵运算性能。对于开发者工具,包含了Cython 3.0.12和Ninja 1.11.1构建工具,方便用户进行自定义扩展开发。
GPU版本镜像特性
GPU版本镜像(pytorch-inference:2.6.0-gpu-py312-cu124-ubuntu22.04-ec2)针对需要CUDA加速的推理工作负载进行了优化,支持NVIDIA CUDA 12.4计算平台:
- GPU加速框架:PyTorch 2.6.0+cu124
- GPU视觉处理:torchvision 0.21.0+cu124
- GPU音频处理:torchaudio 2.6.0+cu124
- CUDA基础库:cuBLAS 12-4和cuDNN 9(CUDA 12版本)
除了CPU版本已有的功能外,GPU版本还额外包含了MPI支持(mpi4py 4.0.3)和Pandas 2.2.3数据分析库,适合大规模分布式推理场景。
系统级优化
两个版本镜像均基于Ubuntu 22.04 LTS构建,系统层面进行了多项优化:
- 使用GCC 11工具链编译,确保最佳性能
- 包含完整的C++开发环境(libstdc++-11-dev)
- 预装开发者工具如Emacs编辑器
- 系统依赖管理清晰,避免版本冲突
适用场景
这些预构建的PyTorch推理镜像特别适合以下应用场景:
- 生产环境模型部署:通过torchserve提供高性能模型服务
- 批量推理任务:利用优化后的NumPy/SciPy处理大规模数据
- 计算机视觉应用:结合OpenCV和torchvision实现高效图像处理
- 语音处理应用:基于torchaudio构建语音识别或合成系统
AWS Deep Learning Containers的PyTorch镜像通过严格的版本控制和兼容性测试,确保用户能够获得稳定可靠的推理环境,同时保持与PyTorch生态系统的完全兼容。开发者可以直接使用这些镜像,无需花费时间在环境配置和依赖解决上,专注于模型开发和业务逻辑实现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00