LangChain-AI LangServe项目中的LLM运行时切换方案
2025-07-04 03:18:09作者:蔡怀权
在LangChain-AI LangServe项目中,开发者经常面临一个常见需求:如何在运行时优雅地切换不同的语言模型(LLM)。本文将从技术实现角度探讨这一问题的解决方案。
问题背景
在构建基于LangChain的应用时,我们通常会创建包含特定LLM的链(chain)。传统做法是为每个LLM创建独立的链,例如:
# 为Anthropic模型创建链
prompt = hub.pull("hwchase17/anthropic-paper-qa")
model = ChatAnthropic(model="claude-2", max_tokens=10000)
chain_anthropic = prompt | model | StrOutputParser()
# 为OpenAI模型创建链
prompt = hub.pull("hwchase17/anthropic-paper-qa")
model = ChatOpenAI(model="gpt-3.5-turbo-1106")
chain_openai = prompt | model | StrOutputParser()
这种方法虽然直观,但存在明显的缺点:代码重复、维护困难,且无法在运行时动态切换模型。
解决方案:Configurable Alternatives
LangChain提供了更优雅的解决方案——使用configurable_alternatives
方法。这种方法允许我们在单个链中定义多个可选的LLM,并在运行时根据需要切换。
实现原理
- 创建基础链结构:首先定义一个基础链,包含共享的组件如prompt和输出解析器
- 配置可选项:使用
configurable_alternatives
为LLM部分定义多个选项 - 运行时选择:通过配置参数在运行时指定使用哪个LLM
代码示例
from langchain_core.runnables import ConfigurableField
# 创建基础prompt
prompt = hub.pull("hwchase17/anthropic-paper-qa")
# 定义可配置的LLM
llm = ChatAnthropic(
model="claude-2",
max_tokens=10000
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(model="gpt-3.5-turbo-1106"),
anthropic=ChatAnthropic(model="claude-2")
)
# 创建单一链
chain = prompt | llm | StrOutputParser()
# 运行时选择LLM
# 使用OpenAI
result = chain.with_config(configurable={"llm": "openai"}).invoke({"question": "..."})
# 使用Anthropic
result = chain.with_config(configurable={"llm": "anthropic"}).invoke({"question": "..."})
技术优势
- 代码简洁:避免了为每个LLM重复创建相似的链结构
- 维护方便:LLM配置集中管理,修改时只需改动一处
- 运行时灵活性:可以根据用户请求、性能需求或其他条件动态切换模型
- 扩展性强:可以轻松添加新的LLM选项而不影响现有代码
实际应用场景
- A/B测试:同时部署多个模型,比较它们的性能
- 故障转移:当首选模型不可用时自动切换到备用模型
- 成本优化:根据查询复杂度选择不同成本的模型
- 功能差异化:为不同用户群体提供不同能力的模型
最佳实践建议
- 为所有可配置的LLM定义清晰的命名规范
- 在文档中详细记录每个LLM选项的特性和适用场景
- 考虑添加配置验证逻辑,确保选择的LLM可用
- 对于生产环境,建议添加性能监控,记录不同LLM的实际表现
通过这种配置化的方法,开发者可以构建更加灵活和可维护的LangChain应用,同时保持代码的整洁和可扩展性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133