NVIDIA Omniverse Orbit项目中观察组噪声对RL训练的影响分析
2025-06-24 23:55:02作者:尤辰城Agatha
概述
在NVIDIA Omniverse Orbit项目的强化学习训练过程中,观察组(observation groups)的处理方式对训练效果有着重要影响。本文将深入探讨当使用多个观察组时,"策略"(policy)和"批评家"(critic)观察值存在差异的情况,以及这种差异对强化学习训练的影响机制。
观察组处理机制差异
在IsaacGym框架中,第一个观察组会被计算,然后特权观察(privileged observations)会与额外观察(如高度扫描、地形参数等)进行拼接。而在IsaacLab框架中,观察组是分开计算的。这种架构差异导致了一个关键现象:当对普通观察和特权观察都添加噪声时,两组观察值之间会出现明显的不匹配。
噪声差异对训练的影响
这种观察值的不匹配确实会影响智能体的训练效果,但这种影响并非完全是负面的:
-
异步优势演员-评论家方法:在实际应用中,异步的演员-评论家方法本身就假设了这种差异的存在。只要噪声量保持在合理范围内,这种偏差实际上可以使演员和评论家对小的扰动具有鲁棒性,这通常是一个理想特性。
-
噪声处理策略:
- 常见的做法是给评论家的观察值添加零噪声,使其能够基于系统的"真实"状态来指导演员
- 特权量本身就不应该受到随机噪声过程的影响,因为它们不是POMDP意义上的观察值
-
框架定制建议:如果需要精确控制,可以修改RL框架来拼接观察组,使评论家只包含特权部分,这样可以复制IsaacGym框架的行为。
实践建议
- 噪声量控制:如果发现训练效果不佳,首先应考虑是否添加了过多的噪声到观察值中
- 环境数量:增加训练环境的数量可以缓解噪声带来的负面影响
- 硬件限制处理:在GPU内存有限的情况下(如只能运行2560个环境),需要通过实验确定是否足够,通常需要平衡环境数量和噪声水平
结论
观察组处理方式和噪声添加策略对强化学习训练有着重要但不一定是负面的影响。理解这种影响机制有助于开发者更好地配置训练参数,在资源限制和训练效果之间找到最佳平衡点。实践表明,适度的噪声差异反而能增强模型的鲁棒性,关键在于找到适合特定任务的噪声水平和环境规模配置。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
662