探索智能汉字纠错的未来:A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Checking
2024-05-23 14:05:49作者:凤尚柏Louis
在这个数字化的时代,中文自动拼写检查和纠错已经成为提高沟通效率的关键工具。现在,我们向您隆重推荐一个开源项目——A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Checking,它来自于2018年的EMNLP会议,旨在为中文拼写检查提供全新的自动化语料库生成方法。
项目介绍
该项目的主要目标是自动创建含有错误的句子,并且可以方便地标记错误位置和正确答案,无需人工介入。它包括一个涵盖271,329个句子的Dataset,以及一个广泛的Confusionset,这些都可用于未来的中文拼写检查研究。此外,这个项目还会持续更新数据集以保持其相关性。
项目技术分析
项目的核心依赖于OCR(光学字符识别)和ASR(自动语音识别)两种方法,如项目中的图像所示。OCR用于从图像中识别文本,而ASR则将音频转换为文本。这两种技术结合,能够有效地模拟自然发生的拼写错误。开发团队还实现了一个基于PyTorch的双向LSTM模型,供用户进行训练和测试。
主要使用的库包括:
- pytesseract:用于OCR处理
- OpenCV:图像处理
- Kaldi:ASR处理
- Python 3.5 和 Pytorch 0.4:作为主编程语言和深度学习框架
- BeautifulSoup:用于HTML解析
应用场景
该技术适用于多种场景,包括但不限于:
- 输入法软件:实时检测并纠正用户的输入错误。
- 在线教育平台:自动评估学生的书写作业,提高批改效率。
- 文档校对系统:快速定位并修复文档中的错别字。
- 自然语言处理研究:构建实验环境,研究汉字拼写错误的识别和修复策略。
项目特点
- 自动化:利用OCR和ASR技术自动生成带错误的语料库,减少人工干预。
- 大规模数据:提供的语料库包含大量不同长度的句子,涵盖了各种类型的错误。
- 持续更新:不断扩充和完善数据集,确保研究的时效性和准确性。
- 开放源代码:所有实现代码和相关资源都是开放的,鼓励社区参与和扩展。
- 混淆集合:为每个汉字提供了视觉或音韵相近的词集,有助于理解拼写错误的复杂性。
要引用此项目,请参考以下论文信息:
@InProceedings{Reimers:2018:EMNLP,
author = {DingminWang, Yan Song, Jing Li, Jialong Han, Haisong Zhang},
title = {{A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Check}},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
month = {11},
year = {2018},
address = {Brussels, Belgium},
}
如果您对此项目有任何疑问,可以直接联系作者Dingmin Wang,邮箱:wangdimmy (AT) gmail.com。
让我们一起探索和推动中文拼写检查的边界,打造更加智能的语言环境!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5