SCRStudio 开源项目最佳实践教程
2025-05-28 23:02:32作者:庞队千Virginia
1. 项目介绍
SCRStudio 是一个基于 Scene Coordinate Regression (SCR) 的视觉定位统一框架,构建在 nerfstudio 项目之上。该框架提供了一种可解释且模块化的 SCR 实现,涵盖了输入编码、网络架构和监督策略等组件。SCRStudio 支持多种预训练的局部编码(稀疏和密集),并集成了最先进的技术来整合全局编码。
2. 项目快速启动
以下是 SCRStudio 的快速启动指南,帮助您开始使用默认的 R-SCoRe SCR 模型,该模型在经典的 Aachen 数据集上进行训练。
环境搭建
首先,建议使用 conda 来管理依赖项。确保在继续之前安装了 Conda。
conda create -n scrstudio python=3.10
conda activate scrstudio
pip install --upgrade pip
安装依赖
安装 PyTorch 和 CUDA(已测试 CUDA 12.1 和 12.4),以及 PyTorch Geometric 和 cuML 用于编码预处理。
conda install pytorch=2.5.1 torchvision=0.20.1 pytorch-cuda=12.4 cuml=25.02 -c pytorch -c rapidsai -c conda-forge -c nvidia
pip install torch_geometric
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.5.1+cu124.html
克隆项目
git clone --recursive https://github.com/cvg/scrstudio.git
cd scrstudio
pip install --upgrade pip setuptools
pip install -e .
训练第一个模型
下载数据
# 下载 Aachen 数据集
scr-download-data aachen
# 下载 NAVER Lab 数据集特定捕获
scr-download-data naver --capture-name dept_1F
预处理数据
scrfacto 模型遵循 R-SCoRe 的方法论,使用 PCA 对局部编码进行降维,并使用 Node2Vec 学习全局编码。
- 局部编码:PCA 压缩
# 计算 Aachen 数据集 Dedode 局部编码的 PCA
scr-encoding-pca dedode --encoder.detector L --encoder.descriptor B --n_components 128 --data data/aachen
- 全局编码:共视图和 Node2Vec 训练
# 计算训练图像的位姿重合度分数
scr-overlap-score --data data/aachen/train --max_depth 50
# 在该图上训练 Node2Vec 模型
scr-train node2vec --data data/aachen --pipeline.model.graph pose_overlap.npz --pipeline.model.edge_threshold 0.2
使用训练好的全局编码:
cp outputs/aachen/node2vec/<timestamp>/scrstudio_models/head.pt data/aachen/train/pose_n2c.pt
模型训练
# 训练 scrfacto 模型
scr-train scrfacto --data data/aachen --pipeline.datamanager.train_dataset.feat_name pose_n2c.pt
训练结果将保存在 outputs/aachen/scrfacto/<timestamp>。
3. 应用案例和最佳实践
在此部分,您将了解如何使用 SCRStudio 进行实际应用,并掌握一些最佳实践。例如,如何对模型进行评估、调整超参数以及如何处理不同规模的数据集。
评估模型
预处理评估数据
# 计算训练数据的 NetVLAD 检索特征并进行产品量化 (PQ) 压缩
scr-retrieval-feat --data data/aachen/train --pq
运行评估
# 计算测试图像的检索特征
scr-retrieval-feat --data data/aachen/test
# 加载配置并运行评估
scr-eval --load-config outputs/aachen/scrfacto/<timestamp>/config.yml --split test
调整超参数
在实际应用中,您可能需要根据具体问题调整模型的超参数。建议从学习率、批次大小和正则化项开始,逐步调整以找到最优配置。
4. 典型生态项目
SCRStudio 是一个活跃的开源项目,它与其他视觉定位和 3D 重构项目形成了良好的生态。以下是一些与之相关的典型项目:
- DSAC:一种用于相机定位的可微分 RANSAC 方法。
- ACE:加速坐标编码,用于快速学习 RGB 和位姿数据。
- GLACE:全局局部加速坐标编码。
- R-SCoRe:重新审视场景坐标回归,用于稳健的大规模视觉定位。
通过这些项目,研究人员和开发者可以进一步探索视觉定位领域的各种方法和技术。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328