Lit-GPT在Mac M1设备上的预训练问题分析与解决方案
2025-05-19 07:32:32作者:温艾琴Wonderful
问题背景
在使用Lit-GPT项目进行模型预训练时,Mac M1设备用户可能会遇到编译错误问题。具体表现为在使用litgpt pretrain命令时,系统会抛出C++编译错误,导致预训练过程无法正常进行。
错误现象分析
在Mac M1设备上运行预训练命令时,主要会出现两种类型的编译错误:
-
使用Apple Clang编译器时:系统报错提示无法找到
algorithm头文件,这表明编译器环境配置存在问题。 -
使用Homebrew GCC编译器时:系统报错提示无法识别
-Xclang编译选项,这是由于GCC与Clang编译器选项不兼容导致的。
根本原因
这些问题实际上源于PyTorch的Dynamo编译后端不支持MPS设备。错误信息中提到的"backend='inductor'"具有误导性,真正的问题在于:
-
MPS设备支持限制:PyTorch目前对Mac M1/M2的MPS设备支持仍有限制,特别是在模型编译方面。
-
资源消耗问题:即使解决了编译问题,在Mac M1设备上预训练模型也面临严重的内存和计算资源限制。例如,预训练一个160M参数的模型可能需要超过23GB内存,训练时间可能长达数天。
解决方案
针对这一问题,可以采取以下解决方案:
-
禁用模型编译:修改Lit-GPT源代码,注释掉pretrain.py文件中涉及模型编译的代码行。这将使模型以非编译模式运行,虽然性能可能有所下降,但可以绕过编译问题。
-
考虑替代方案:鉴于Mac M1设备的计算资源限制,建议:
- 使用更小的模型进行实验(如Pythia-14m)
- 考虑在云服务或配备GPU的工作站上进行大规模预训练
- 使用已预训练好的模型进行微调而非从头预训练
性能考量
在实际测试中,即使是较小的Pythia-14m模型(约14M参数),在Mac M3 Pro设备上预训练1000万token也需要约24分钟。按此推算:
- 70M参数模型:预计需要2-3小时
- 160M参数模型:预计需要24小时以上
- 更大模型:几乎不可行
结论与建议
对于Mac M1/M2用户,建议:
- 明确预训练需求,评估是否真的需要从头预训练模型
- 如果必须预训练,考虑使用最小可用模型进行概念验证
- 长期解决方案应考虑使用专业GPU设备或云服务
- 关注PyTorch对MPS设备的支持进展,未来版本可能会改善这一状况
Lit-GPT项目在Mac ARM架构设备上的支持仍在发展中,用户需要根据自身硬件条件合理调整预期和使用方式。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355