Lit-GPT在Mac M1设备上的预训练问题分析与解决方案
2025-05-19 01:53:46作者:温艾琴Wonderful
问题背景
在使用Lit-GPT项目进行模型预训练时,Mac M1设备用户可能会遇到编译错误问题。具体表现为在使用litgpt pretrain命令时,系统会抛出C++编译错误,导致预训练过程无法正常进行。
错误现象分析
在Mac M1设备上运行预训练命令时,主要会出现两种类型的编译错误:
-
使用Apple Clang编译器时:系统报错提示无法找到
algorithm头文件,这表明编译器环境配置存在问题。 -
使用Homebrew GCC编译器时:系统报错提示无法识别
-Xclang编译选项,这是由于GCC与Clang编译器选项不兼容导致的。
根本原因
这些问题实际上源于PyTorch的Dynamo编译后端不支持MPS设备。错误信息中提到的"backend='inductor'"具有误导性,真正的问题在于:
-
MPS设备支持限制:PyTorch目前对Mac M1/M2的MPS设备支持仍有限制,特别是在模型编译方面。
-
资源消耗问题:即使解决了编译问题,在Mac M1设备上预训练模型也面临严重的内存和计算资源限制。例如,预训练一个160M参数的模型可能需要超过23GB内存,训练时间可能长达数天。
解决方案
针对这一问题,可以采取以下解决方案:
-
禁用模型编译:修改Lit-GPT源代码,注释掉pretrain.py文件中涉及模型编译的代码行。这将使模型以非编译模式运行,虽然性能可能有所下降,但可以绕过编译问题。
-
考虑替代方案:鉴于Mac M1设备的计算资源限制,建议:
- 使用更小的模型进行实验(如Pythia-14m)
- 考虑在云服务或配备GPU的工作站上进行大规模预训练
- 使用已预训练好的模型进行微调而非从头预训练
性能考量
在实际测试中,即使是较小的Pythia-14m模型(约14M参数),在Mac M3 Pro设备上预训练1000万token也需要约24分钟。按此推算:
- 70M参数模型:预计需要2-3小时
- 160M参数模型:预计需要24小时以上
- 更大模型:几乎不可行
结论与建议
对于Mac M1/M2用户,建议:
- 明确预训练需求,评估是否真的需要从头预训练模型
- 如果必须预训练,考虑使用最小可用模型进行概念验证
- 长期解决方案应考虑使用专业GPU设备或云服务
- 关注PyTorch对MPS设备的支持进展,未来版本可能会改善这一状况
Lit-GPT项目在Mac ARM架构设备上的支持仍在发展中,用户需要根据自身硬件条件合理调整预期和使用方式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869