Lit-GPT在Mac M1设备上的预训练问题分析与解决方案
2025-05-19 05:47:54作者:温艾琴Wonderful
问题背景
在使用Lit-GPT项目进行模型预训练时,Mac M1设备用户可能会遇到编译错误问题。具体表现为在使用litgpt pretrain命令时,系统会抛出C++编译错误,导致预训练过程无法正常进行。
错误现象分析
在Mac M1设备上运行预训练命令时,主要会出现两种类型的编译错误:
-
使用Apple Clang编译器时:系统报错提示无法找到
algorithm头文件,这表明编译器环境配置存在问题。 -
使用Homebrew GCC编译器时:系统报错提示无法识别
-Xclang编译选项,这是由于GCC与Clang编译器选项不兼容导致的。
根本原因
这些问题实际上源于PyTorch的Dynamo编译后端不支持MPS设备。错误信息中提到的"backend='inductor'"具有误导性,真正的问题在于:
-
MPS设备支持限制:PyTorch目前对Mac M1/M2的MPS设备支持仍有限制,特别是在模型编译方面。
-
资源消耗问题:即使解决了编译问题,在Mac M1设备上预训练模型也面临严重的内存和计算资源限制。例如,预训练一个160M参数的模型可能需要超过23GB内存,训练时间可能长达数天。
解决方案
针对这一问题,可以采取以下解决方案:
-
禁用模型编译:修改Lit-GPT源代码,注释掉pretrain.py文件中涉及模型编译的代码行。这将使模型以非编译模式运行,虽然性能可能有所下降,但可以绕过编译问题。
-
考虑替代方案:鉴于Mac M1设备的计算资源限制,建议:
- 使用更小的模型进行实验(如Pythia-14m)
- 考虑在云服务或配备GPU的工作站上进行大规模预训练
- 使用已预训练好的模型进行微调而非从头预训练
性能考量
在实际测试中,即使是较小的Pythia-14m模型(约14M参数),在Mac M3 Pro设备上预训练1000万token也需要约24分钟。按此推算:
- 70M参数模型:预计需要2-3小时
- 160M参数模型:预计需要24小时以上
- 更大模型:几乎不可行
结论与建议
对于Mac M1/M2用户,建议:
- 明确预训练需求,评估是否真的需要从头预训练模型
- 如果必须预训练,考虑使用最小可用模型进行概念验证
- 长期解决方案应考虑使用专业GPU设备或云服务
- 关注PyTorch对MPS设备的支持进展,未来版本可能会改善这一状况
Lit-GPT项目在Mac ARM架构设备上的支持仍在发展中,用户需要根据自身硬件条件合理调整预期和使用方式。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322