使用jq工具在Bash脚本中构建多层级JSON
2025-05-04 14:43:40作者:卓艾滢Kingsley
在Shell脚本编程中,处理JSON数据是一项常见任务。jq作为一款强大的命令行JSON处理器,能够帮助我们高效地构建和操作JSON数据结构。本文将通过一个实际案例,讲解如何使用jq在Bash脚本中动态构建包含数组的多层级JSON结构。
问题背景
开发者尝试从一个文本文件中读取数据,并将其转换为特定结构的JSON格式。核心需求包括:
- 解析包含时间戳和站点信息的多行文本
- 将时间戳转换为可读格式
- 将站点信息组织为JSON数组
- 动态地向数组中添加元素
初始实现分析
原始脚本采用了以下方法:
- 使用
readarray读取文件内容到数组 - 遍历数组元素,通过正则匹配识别不同类型的数据
- 对于时间戳,转换为日期格式并添加到JSON对象
- 对于站点信息,尝试创建节点数组并添加MAC地址和接口信息
关键挑战
在实现过程中,开发者遇到了向JSON数组中动态添加元素的困难。具体表现为:
- 直接使用变量作为数组索引(
.nodes[$count])无法正常工作 - 尝试使用数组长度作为索引(
.nodes[.nodes | length])也未达到预期效果
解决方案
jq提供了多种向数组添加元素的方法,以下是几种有效的实现方式:
方法一:使用数组拼接运算符
JSON=$(echo $JSON | jq --arg mac "${mac}" '.nodes += [{"mac": $mac}]')
这种方法简洁明了,通过+=运算符将包含新元素的对象追加到数组末尾。
方法二:使用数组构造语法
JSON=$(echo $JSON | jq --arg mac "${mac}" '.nodes |= . + [{"mac": $mac}]')
这种语法使用|=更新运算符,将原数组与新构造的数组合并。
方法三:使用变量索引
如果需要显式使用计数变量作为索引,可以这样实现:
JSON=$(echo $JSON | jq --arg mac "${mac}" --argjson count "$count" '.nodes[.nodes|length] = {"mac": $mac}')
完整改进方案
结合上述方法,改进后的脚本核心部分如下:
#!/bin/bash
JSON=$(jq -n '{}')
readarray -t array < ./station.sample
for e in "${array[@]}"
do
if echo "$e" | grep -Eq '^[0-9]{10}' >/dev/null; then
timestamp=$e
datetime=$(date +'%Y-%m-%d %H:%M:%S' -d "@$e")
JSON=$(jq -n --argjson json "$JSON" \
--arg timestamp "$timestamp" \
--arg datetime "$datetime" \
'$json + ($ARGS.named|del(.json))')
fi
if echo "$e" | grep '^Station ' >/dev/null; then
mac=$(echo "$e" | awk '{print $2}')
interface=$(echo "$e" | awk '{print $4}' | rev | cut -c2- | rev)
JSON=$(jq -n --argjson json "$JSON" \
--arg mac "$mac" \
--arg interface "$interface" \
'$json | (.nodes += [{"mac": $mac, "interface": $interface}])')
fi
done
性能优化建议
- 减少jq调用次数:每次调用jq都会产生进程创建开销,可以考虑将多次操作合并到单个jq命令中
- 使用
--argjson传递复杂数据结构 - 对于大型数据集,考虑使用jq的流式处理功能
扩展应用
这种技术可以应用于多种场景:
- 日志文件转JSON
- 系统监控数据收集
- 网络设备配置导出
- API响应数据处理
通过掌握jq在Shell脚本中的高级用法,开发者可以更高效地处理复杂的JSON数据转换任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134