使用jq工具在Bash脚本中构建多层级JSON
2025-05-04 09:13:32作者:卓艾滢Kingsley
在Shell脚本编程中,处理JSON数据是一项常见任务。jq作为一款强大的命令行JSON处理器,能够帮助我们高效地构建和操作JSON数据结构。本文将通过一个实际案例,讲解如何使用jq在Bash脚本中动态构建包含数组的多层级JSON结构。
问题背景
开发者尝试从一个文本文件中读取数据,并将其转换为特定结构的JSON格式。核心需求包括:
- 解析包含时间戳和站点信息的多行文本
- 将时间戳转换为可读格式
- 将站点信息组织为JSON数组
- 动态地向数组中添加元素
初始实现分析
原始脚本采用了以下方法:
- 使用
readarray读取文件内容到数组 - 遍历数组元素,通过正则匹配识别不同类型的数据
- 对于时间戳,转换为日期格式并添加到JSON对象
- 对于站点信息,尝试创建节点数组并添加MAC地址和接口信息
关键挑战
在实现过程中,开发者遇到了向JSON数组中动态添加元素的困难。具体表现为:
- 直接使用变量作为数组索引(
.nodes[$count])无法正常工作 - 尝试使用数组长度作为索引(
.nodes[.nodes | length])也未达到预期效果
解决方案
jq提供了多种向数组添加元素的方法,以下是几种有效的实现方式:
方法一:使用数组拼接运算符
JSON=$(echo $JSON | jq --arg mac "${mac}" '.nodes += [{"mac": $mac}]')
这种方法简洁明了,通过+=运算符将包含新元素的对象追加到数组末尾。
方法二:使用数组构造语法
JSON=$(echo $JSON | jq --arg mac "${mac}" '.nodes |= . + [{"mac": $mac}]')
这种语法使用|=更新运算符,将原数组与新构造的数组合并。
方法三:使用变量索引
如果需要显式使用计数变量作为索引,可以这样实现:
JSON=$(echo $JSON | jq --arg mac "${mac}" --argjson count "$count" '.nodes[.nodes|length] = {"mac": $mac}')
完整改进方案
结合上述方法,改进后的脚本核心部分如下:
#!/bin/bash
JSON=$(jq -n '{}')
readarray -t array < ./station.sample
for e in "${array[@]}"
do
if echo "$e" | grep -Eq '^[0-9]{10}' >/dev/null; then
timestamp=$e
datetime=$(date +'%Y-%m-%d %H:%M:%S' -d "@$e")
JSON=$(jq -n --argjson json "$JSON" \
--arg timestamp "$timestamp" \
--arg datetime "$datetime" \
'$json + ($ARGS.named|del(.json))')
fi
if echo "$e" | grep '^Station ' >/dev/null; then
mac=$(echo "$e" | awk '{print $2}')
interface=$(echo "$e" | awk '{print $4}' | rev | cut -c2- | rev)
JSON=$(jq -n --argjson json "$JSON" \
--arg mac "$mac" \
--arg interface "$interface" \
'$json | (.nodes += [{"mac": $mac, "interface": $interface}])')
fi
done
性能优化建议
- 减少jq调用次数:每次调用jq都会产生进程创建开销,可以考虑将多次操作合并到单个jq命令中
- 使用
--argjson传递复杂数据结构 - 对于大型数据集,考虑使用jq的流式处理功能
扩展应用
这种技术可以应用于多种场景:
- 日志文件转JSON
- 系统监控数据收集
- 网络设备配置导出
- API响应数据处理
通过掌握jq在Shell脚本中的高级用法,开发者可以更高效地处理复杂的JSON数据转换任务。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26