使用jq工具在Bash脚本中构建多层级JSON
2025-05-04 11:07:20作者:卓艾滢Kingsley
在Shell脚本编程中,处理JSON数据是一项常见任务。jq作为一款强大的命令行JSON处理器,能够帮助我们高效地构建和操作JSON数据结构。本文将通过一个实际案例,讲解如何使用jq在Bash脚本中动态构建包含数组的多层级JSON结构。
问题背景
开发者尝试从一个文本文件中读取数据,并将其转换为特定结构的JSON格式。核心需求包括:
- 解析包含时间戳和站点信息的多行文本
- 将时间戳转换为可读格式
- 将站点信息组织为JSON数组
- 动态地向数组中添加元素
初始实现分析
原始脚本采用了以下方法:
- 使用
readarray
读取文件内容到数组 - 遍历数组元素,通过正则匹配识别不同类型的数据
- 对于时间戳,转换为日期格式并添加到JSON对象
- 对于站点信息,尝试创建节点数组并添加MAC地址和接口信息
关键挑战
在实现过程中,开发者遇到了向JSON数组中动态添加元素的困难。具体表现为:
- 直接使用变量作为数组索引(
.nodes[$count]
)无法正常工作 - 尝试使用数组长度作为索引(
.nodes[.nodes | length]
)也未达到预期效果
解决方案
jq提供了多种向数组添加元素的方法,以下是几种有效的实现方式:
方法一:使用数组拼接运算符
JSON=$(echo $JSON | jq --arg mac "${mac}" '.nodes += [{"mac": $mac}]')
这种方法简洁明了,通过+=
运算符将包含新元素的对象追加到数组末尾。
方法二:使用数组构造语法
JSON=$(echo $JSON | jq --arg mac "${mac}" '.nodes |= . + [{"mac": $mac}]')
这种语法使用|=
更新运算符,将原数组与新构造的数组合并。
方法三:使用变量索引
如果需要显式使用计数变量作为索引,可以这样实现:
JSON=$(echo $JSON | jq --arg mac "${mac}" --argjson count "$count" '.nodes[.nodes|length] = {"mac": $mac}')
完整改进方案
结合上述方法,改进后的脚本核心部分如下:
#!/bin/bash
JSON=$(jq -n '{}')
readarray -t array < ./station.sample
for e in "${array[@]}"
do
if echo "$e" | grep -Eq '^[0-9]{10}' >/dev/null; then
timestamp=$e
datetime=$(date +'%Y-%m-%d %H:%M:%S' -d "@$e")
JSON=$(jq -n --argjson json "$JSON" \
--arg timestamp "$timestamp" \
--arg datetime "$datetime" \
'$json + ($ARGS.named|del(.json))')
fi
if echo "$e" | grep '^Station ' >/dev/null; then
mac=$(echo "$e" | awk '{print $2}')
interface=$(echo "$e" | awk '{print $4}' | rev | cut -c2- | rev)
JSON=$(jq -n --argjson json "$JSON" \
--arg mac "$mac" \
--arg interface "$interface" \
'$json | (.nodes += [{"mac": $mac, "interface": $interface}])')
fi
done
性能优化建议
- 减少jq调用次数:每次调用jq都会产生进程创建开销,可以考虑将多次操作合并到单个jq命令中
- 使用
--argjson
传递复杂数据结构 - 对于大型数据集,考虑使用jq的流式处理功能
扩展应用
这种技术可以应用于多种场景:
- 日志文件转JSON
- 系统监控数据收集
- 网络设备配置导出
- API响应数据处理
通过掌握jq在Shell脚本中的高级用法,开发者可以更高效地处理复杂的JSON数据转换任务。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193