探索数据的另一面:ggside —— ggplot2的强力扩展
在数据分析和可视化的世界中,ggplot2是R语言中的一颗璀璨明星。今天,我们要向您介绍一个能为您的ggplot2图表增添额外维度的强大工具——ggside。这个由Justin Landis开发的开源R包不仅提供了新的几何对象,还能将额外的信息以侧边图的形式展现出来,让您的数据可视化工具有了更多可能性。
项目介绍
ggside是一个用于拓展ggplot2功能的R包。它允许您在主面板的一侧添加图形信息,无论是一维的元数据还是连续轴上的总结图形,如箱线图或密度分布。通过这种方式,您可以更直观地理解数据背后的模式,而无需离开主要的视觉空间。
项目技术分析
ggside的核心在于其一系列基于“geom_xside*”和“geom_yside*”的几何对象。它们可以轻松地与ggplot2现有的几何对象结合,创建出带有侧边图的复杂图表。此外, ggside还提供了一系列的尺度转换函数,如“scale_xsidey_”和“scale_ysidex_”,使得混合连续和离散轴的数据可视化变得更加简单。
应用场景
ggside在各种情境下都能发挥优势,尤其适用于:
- 数据探索:在直方图或散点图旁边添加密度曲线,可迅速揭示数据分布。
- 比较不同类别:使用箱线图或条形图在侧面展示分类变量的分布,对比效果更佳。
- 空间数据可视化:地理数据与时间序列数据并存时,可以在一侧展示相关统计信息。
项目特点
- 易用性:ggside的语法与ggplot2保持一致,便于上手和学习。
- 灵活性:支持各种几何对象,并可自定义侧边图的布局和样式。
- 深度集成:可无缝对接ggplot2,充分利用现有ggplot2生态系统。
- 可定制化:丰富的主题元素让您能够微调侧边图的外观,使其与主图协调一致。
示例
以下是一个例子,展示了如何使用ggside在散点图的两侧分别添加密度图和箱线图:
library(ggplot2)
library(ggside)
ggplot(mpg, aes(displ, hwy, color = class)) +
geom_point(size = 2) +
geom_xsidedensity(aes(y = after_stat(density)), position = "stack") +
geom_ysidedensity(aes(x = after_stat(density)), position = "stack") +
theme(axis.text.x = element_text(angle = 90, vjust = .5))

不仅如此,ggside还可以处理混合类型的数据,如在连续轴旁添加离散轴的箱线图:
ggplot(mpg, aes(displ, hwy, color = class)) +
geom_point(size = 2) +
geom_xsideboxplot(aes(y =class), orientation = "y") +
scale_xsidey_discrete() +
geom_ysidedensity(aes(x = after_stat(density)), position = "stack") +
scale_ysidex_continuous(guide = guide_axis(angle = 90), minor_breaks = NULL) +
theme(ggside.panel.scale = .3)

ggside允许您自由调整侧边图的风格,从而创造出专业且引人入胜的图表。
结论
如果您正在寻找一种方法来增强ggplot2图表的功能,ggside绝对值得一试。它的强大功能和易用性将帮助您从新的角度解读和展示数据,提升您的数据可视化水平。立即尝试ggside,开启您的数据探索之旅吧!
要了解更多关于ggside的详细信息,请查看其提供的基本使用指南vignette('ggside_basic_usage')。如果您遇到问题或有改进建议,欢迎到jtlandis/ggside提交反馈。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00