Kubespray 升级至 v2.25.0 后 Calico v3.27.3 的 CPU 使用率异常问题分析
在 Kubernetes 集群网络方案中,Calico 作为一款高性能的网络插件被广泛使用。近期有用户反馈,在将 Kubespray 从 v2.24.1 升级到 v2.25.0 后,随 Kubespray 自动升级的 Calico 也从 v3.25.2 升级到了 v3.27.3,这导致了 calico-node Pod 的 CPU 使用率出现显著上升。
问题现象
升级前,在 Kubespray v2.24.1 和 Kubernetes v1.28.6 环境下,Calico v3.25.2 的每个 calico-node Pod 的 CPU 使用率维持在约 0.05 核的正常水平。升级到 Kubespray v2.25.0 和 Kubernetes v1.29.5 后,Calico 自动升级到 v3.27.3,此时 calico-node Pod 的 CPU 使用率飙升至约 0.4 核,增长了近 8 倍。
虽然这种异常高的 CPU 使用率没有直接导致 Pod 被驱逐,但对于生产环境来说,这种资源消耗的增加无疑会影响集群的整体性能和稳定性。经过进一步测试,将 Calico 升级到 v3.28.1 后,CPU 使用率又恢复到了正常的 0.05 核水平。
问题根源
经过技术分析,这个问题与 Calico v3.27.3 版本中的一个已知问题有关。在该版本中,Calico 的网络策略处理逻辑存在性能退化问题,导致在处理网络策略时消耗了过多的 CPU 资源。特别是在大规模集群或网络策略较多的环境中,这个问题会更加明显。
解决方案
对于遇到此问题的用户,建议采取以下解决方案:
-
升级到 Calico v3.28.1:这是最直接的解决方案,该版本已经修复了相关的性能问题。用户可以通过修改 Kubespray 配置中的 calico_version 参数来指定使用 v3.28.1 版本。
-
临时调整资源限制:如果暂时无法升级,可以考虑适当增加 calico-node Pod 的 CPU 资源限制,以避免因资源不足导致的问题。但这只是权宜之计,不能从根本上解决问题。
-
监控与告警:在问题解决前,加强对 calico-node Pod 的资源监控,设置适当的告警阈值,以便及时发现并处理可能的性能问题。
最佳实践建议
-
升级前的测试:在进行 Kubespray 升级前,建议在测试环境中先验证新版本的行为,特别是网络插件这类核心组件的性能变化。
-
版本兼容性检查:在升级 Kubernetes 版本时,要特别注意各组件(如 Calico)的版本兼容性矩阵,确保选择的版本组合是经过验证的。
-
性能基准测试:对于生产环境,建议建立性能基准测试流程,在每次升级前后进行对比,以便及时发现性能退化问题。
-
关注社区动态:定期查看 Calico 和 Kubespray 的发布说明和已知问题,了解可能影响生产环境的问题和修复方案。
总结
这次事件再次证明了在 Kubernetes 生态系统中,组件版本间的兼容性和性能表现需要特别关注。作为集群管理员,在规划升级路径时,不仅要考虑功能需求,还需要关注性能指标的变化。Kubespray 社区已经在新版本中修复了这个问题,用户可以通过升级到即将发布的 v2.26 版本或手动指定 Calico 版本为 v3.28.1 来解决这个问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00