QwenLM/Qwen3全量微调中的重复输出问题分析与解决
2025-05-11 15:27:41作者:廉彬冶Miranda
问题背景
在使用QwenLM/Qwen3项目进行全量微调(full fine-tuning)时,部分用户遇到了模型推理时输出结果不断重复的问题,直到达到max_new_tokens设定的最大长度限制。这种现象通常表明模型在生成过程中无法正确识别终止条件,导致生成过程无法正常结束。
问题表现
用户报告的主要症状包括:
- 模型推理时输出内容不断重复
- 生成过程持续到max_new_tokens设定的最大长度
- 控制台出现警告信息:
- "Special tokens have been added in the vocabulary..."
- "The attention mask and the pad token id were not set..."
- "Setting
pad_token_idtoeos_token_id..."
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
终止标记配置不当:在微调基础模型时,终止标记(EOS token)的配置不正确。Qwen系列模型通常使用
<|im_end|>(token id 151645)作为终止标记,而非默认的<|endoftext|>(token id 151643)。 -
注意力掩码问题:由于pad token和eos token被设置为相同值,导致模型无法正确区分填充位置和终止位置,从而影响生成过程的终止判断。
-
特殊词嵌入未微调:警告信息表明特殊token的词嵌入可能没有经过充分微调,导致模型对这些关键标记的理解不准确。
解决方案
针对上述问题,可以采取以下解决措施:
-
修改模型配置文件:
- 在
config.json和generation_config.json中明确设置eos_token为<|im_end|> - 将eos_token_id设置为151645
- 在
-
确保数据预处理正确:
- 检查数据预处理过程中是否正确处理了特殊标记
- 确认输入数据中的终止标记与模型配置一致
-
验证微调过程:
- 检查微调过程中是否包含了所有特殊token的词嵌入更新
- 确保模型完整学习了终止标记的含义
实施建议
对于使用QwenLM/Qwen3进行全量微调的用户,建议:
- 在微调前仔细检查模型配置文件中的tokenizer设置
- 验证数据预处理流程是否正确处理了特殊标记
- 微调完成后,使用小规模测试数据验证生成效果
- 关注控制台警告信息,及时调整相关配置
总结
QwenLM/Qwen3项目中的重复输出问题通常源于终止标记配置不当或数据预处理不完整。通过正确配置模型参数和确保数据处理流程的准确性,可以有效解决这一问题。对于深度学习模型微调,特别是大型语言模型,细节配置的正确性往往对最终效果有着决定性影响。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217