QwenLM/Qwen3全量微调中的重复输出问题分析与解决
2025-05-11 09:36:34作者:廉彬冶Miranda
问题背景
在使用QwenLM/Qwen3项目进行全量微调(full fine-tuning)时,部分用户遇到了模型推理时输出结果不断重复的问题,直到达到max_new_tokens设定的最大长度限制。这种现象通常表明模型在生成过程中无法正确识别终止条件,导致生成过程无法正常结束。
问题表现
用户报告的主要症状包括:
- 模型推理时输出内容不断重复
- 生成过程持续到max_new_tokens设定的最大长度
- 控制台出现警告信息:
- "Special tokens have been added in the vocabulary..."
- "The attention mask and the pad token id were not set..."
- "Setting
pad_token_id
toeos_token_id
..."
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
终止标记配置不当:在微调基础模型时,终止标记(EOS token)的配置不正确。Qwen系列模型通常使用
<|im_end|>
(token id 151645)作为终止标记,而非默认的<|endoftext|>
(token id 151643)。 -
注意力掩码问题:由于pad token和eos token被设置为相同值,导致模型无法正确区分填充位置和终止位置,从而影响生成过程的终止判断。
-
特殊词嵌入未微调:警告信息表明特殊token的词嵌入可能没有经过充分微调,导致模型对这些关键标记的理解不准确。
解决方案
针对上述问题,可以采取以下解决措施:
-
修改模型配置文件:
- 在
config.json
和generation_config.json
中明确设置eos_token为<|im_end|>
- 将eos_token_id设置为151645
- 在
-
确保数据预处理正确:
- 检查数据预处理过程中是否正确处理了特殊标记
- 确认输入数据中的终止标记与模型配置一致
-
验证微调过程:
- 检查微调过程中是否包含了所有特殊token的词嵌入更新
- 确保模型完整学习了终止标记的含义
实施建议
对于使用QwenLM/Qwen3进行全量微调的用户,建议:
- 在微调前仔细检查模型配置文件中的tokenizer设置
- 验证数据预处理流程是否正确处理了特殊标记
- 微调完成后,使用小规模测试数据验证生成效果
- 关注控制台警告信息,及时调整相关配置
总结
QwenLM/Qwen3项目中的重复输出问题通常源于终止标记配置不当或数据预处理不完整。通过正确配置模型参数和确保数据处理流程的准确性,可以有效解决这一问题。对于深度学习模型微调,特别是大型语言模型,细节配置的正确性往往对最终效果有着决定性影响。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133