QwenLM/Qwen3全量微调中的重复输出问题分析与解决
2025-05-11 01:31:49作者:廉彬冶Miranda
问题背景
在使用QwenLM/Qwen3项目进行全量微调(full fine-tuning)时,部分用户遇到了模型推理时输出结果不断重复的问题,直到达到max_new_tokens设定的最大长度限制。这种现象通常表明模型在生成过程中无法正确识别终止条件,导致生成过程无法正常结束。
问题表现
用户报告的主要症状包括:
- 模型推理时输出内容不断重复
- 生成过程持续到max_new_tokens设定的最大长度
- 控制台出现警告信息:
- "Special tokens have been added in the vocabulary..."
- "The attention mask and the pad token id were not set..."
- "Setting
pad_token_idtoeos_token_id..."
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
终止标记配置不当:在微调基础模型时,终止标记(EOS token)的配置不正确。Qwen系列模型通常使用
<|im_end|>(token id 151645)作为终止标记,而非默认的<|endoftext|>(token id 151643)。 -
注意力掩码问题:由于pad token和eos token被设置为相同值,导致模型无法正确区分填充位置和终止位置,从而影响生成过程的终止判断。
-
特殊词嵌入未微调:警告信息表明特殊token的词嵌入可能没有经过充分微调,导致模型对这些关键标记的理解不准确。
解决方案
针对上述问题,可以采取以下解决措施:
-
修改模型配置文件:
- 在
config.json和generation_config.json中明确设置eos_token为<|im_end|> - 将eos_token_id设置为151645
- 在
-
确保数据预处理正确:
- 检查数据预处理过程中是否正确处理了特殊标记
- 确认输入数据中的终止标记与模型配置一致
-
验证微调过程:
- 检查微调过程中是否包含了所有特殊token的词嵌入更新
- 确保模型完整学习了终止标记的含义
实施建议
对于使用QwenLM/Qwen3进行全量微调的用户,建议:
- 在微调前仔细检查模型配置文件中的tokenizer设置
- 验证数据预处理流程是否正确处理了特殊标记
- 微调完成后,使用小规模测试数据验证生成效果
- 关注控制台警告信息,及时调整相关配置
总结
QwenLM/Qwen3项目中的重复输出问题通常源于终止标记配置不当或数据预处理不完整。通过正确配置模型参数和确保数据处理流程的准确性,可以有效解决这一问题。对于深度学习模型微调,特别是大型语言模型,细节配置的正确性往往对最终效果有着决定性影响。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1