Graphviz 开源项目教程
1. 项目介绍
Graphviz(Graph Visualization Software)是一个开源的图形可视化工具,由AT&T Research和Lucent Bell Labs开发。它能够将图形的描述信息转换为各种格式的可视化图形,如图像、SVG、PDF等。Graphviz的主要用途包括网络拓扑图、流程图、组织结构图等。
Graphviz的核心功能是通过简单的文本描述语言来定义图形结构,并使用不同的布局引擎(如dot、neato、fdp等)生成图形。项目的主要代码库已经迁移到GitLab,但GitHub上的MOTHBALLED-graphviz仓库仍然保留了部分历史代码和文档。
2. 项目快速启动
2.1 安装Graphviz
在Linux系统上,可以通过包管理器安装Graphviz:
sudo apt-get install graphviz
在macOS上,可以使用Homebrew安装:
brew install graphviz
2.2 使用Graphviz生成图形
以下是一个简单的示例,展示如何使用Graphviz生成一个简单的有向图:
# 创建一个简单的dot文件
echo "digraph G { A -> B; B -> C; C -> A; }" > example.dot
# 使用dot命令生成PNG图像
dot -Tpng example.dot -o example.png
2.3 代码示例
以下是一个使用C语言编写的Graphviz示例代码:
#include <gvc.h>
int main(int argc, char **argv) {
Agraph_t *g;
Agnode_t *n, *m;
Agedge_t *e;
/* 创建一个简单的有向图 */
g = agopen("g", AGDIGRAPH);
n = agnode(g, "n");
m = agnode(g, "m");
e = agedge(g, n, m);
/* 设置节点属性 */
agsafeset(n, "color", "red", "");
/* 使用dot布局引擎 */
GVC_t *gvc = gvContext();
gvLayout(gvc, g, "dot");
/* 输出为dot格式 */
gvRender(gvc, g, "dot", stdout);
/* 释放资源 */
gvFreeLayout(gvc, g);
agclose(g);
gvFreeContext(gvc);
return 0;
}
3. 应用案例和最佳实践
3.1 网络拓扑图
Graphviz常用于生成网络拓扑图,展示网络设备之间的连接关系。通过定义节点和边的关系,可以清晰地展示网络结构。
3.2 流程图
在软件开发中,Graphviz可以用于生成流程图,展示程序的执行流程或业务流程。通过定义节点和边的顺序,可以直观地展示流程的走向。
3.3 组织结构图
Graphviz还可以用于生成组织结构图,展示公司或组织的层级关系。通过定义节点和边的层级关系,可以清晰地展示组织的结构。
4. 典型生态项目
4.1 Gephi
Gephi是一个开源的网络分析和可视化工具,支持导入Graphviz生成的图形数据,并提供更丰富的可视化功能。
4.2 NetworkX
NetworkX是一个Python库,用于创建、操作和研究复杂网络的结构、动态和功能。它可以与Graphviz结合使用,生成复杂的网络图形。
4.3 D3.js
D3.js是一个用于数据可视化的JavaScript库,支持导入Graphviz生成的SVG图形,并提供动态交互功能。
通过这些生态项目,Graphviz可以与其他工具结合,实现更复杂和多样化的图形可视化需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00