Graphviz 开源项目教程
1. 项目介绍
Graphviz(Graph Visualization Software)是一个开源的图形可视化工具,由AT&T Research和Lucent Bell Labs开发。它能够将图形的描述信息转换为各种格式的可视化图形,如图像、SVG、PDF等。Graphviz的主要用途包括网络拓扑图、流程图、组织结构图等。
Graphviz的核心功能是通过简单的文本描述语言来定义图形结构,并使用不同的布局引擎(如dot、neato、fdp等)生成图形。项目的主要代码库已经迁移到GitLab,但GitHub上的MOTHBALLED-graphviz仓库仍然保留了部分历史代码和文档。
2. 项目快速启动
2.1 安装Graphviz
在Linux系统上,可以通过包管理器安装Graphviz:
sudo apt-get install graphviz
在macOS上,可以使用Homebrew安装:
brew install graphviz
2.2 使用Graphviz生成图形
以下是一个简单的示例,展示如何使用Graphviz生成一个简单的有向图:
# 创建一个简单的dot文件
echo "digraph G { A -> B; B -> C; C -> A; }" > example.dot
# 使用dot命令生成PNG图像
dot -Tpng example.dot -o example.png
2.3 代码示例
以下是一个使用C语言编写的Graphviz示例代码:
#include <gvc.h>
int main(int argc, char **argv) {
Agraph_t *g;
Agnode_t *n, *m;
Agedge_t *e;
/* 创建一个简单的有向图 */
g = agopen("g", AGDIGRAPH);
n = agnode(g, "n");
m = agnode(g, "m");
e = agedge(g, n, m);
/* 设置节点属性 */
agsafeset(n, "color", "red", "");
/* 使用dot布局引擎 */
GVC_t *gvc = gvContext();
gvLayout(gvc, g, "dot");
/* 输出为dot格式 */
gvRender(gvc, g, "dot", stdout);
/* 释放资源 */
gvFreeLayout(gvc, g);
agclose(g);
gvFreeContext(gvc);
return 0;
}
3. 应用案例和最佳实践
3.1 网络拓扑图
Graphviz常用于生成网络拓扑图,展示网络设备之间的连接关系。通过定义节点和边的关系,可以清晰地展示网络结构。
3.2 流程图
在软件开发中,Graphviz可以用于生成流程图,展示程序的执行流程或业务流程。通过定义节点和边的顺序,可以直观地展示流程的走向。
3.3 组织结构图
Graphviz还可以用于生成组织结构图,展示公司或组织的层级关系。通过定义节点和边的层级关系,可以清晰地展示组织的结构。
4. 典型生态项目
4.1 Gephi
Gephi是一个开源的网络分析和可视化工具,支持导入Graphviz生成的图形数据,并提供更丰富的可视化功能。
4.2 NetworkX
NetworkX是一个Python库,用于创建、操作和研究复杂网络的结构、动态和功能。它可以与Graphviz结合使用,生成复杂的网络图形。
4.3 D3.js
D3.js是一个用于数据可视化的JavaScript库,支持导入Graphviz生成的SVG图形,并提供动态交互功能。
通过这些生态项目,Graphviz可以与其他工具结合,实现更复杂和多样化的图形可视化需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00