Code Llama预训练数据格式解析:BOS与EOS标记的使用实践
在大型语言模型的预训练过程中,数据格式的设计对模型性能有着重要影响。本文将深入探讨Code Llama预训练阶段特殊标记的使用方式,特别是BOS(Beginning of Sequence)和EOS(End of Sequence)这两个关键标记的具体应用。
特殊标记在预训练中的作用
BOS和EOS标记是Transformer架构语言模型中的两个基础控制标记。BOS标记表示序列的开始,通常用于初始化模型的注意力机制;EOS标记则标志序列的结束,帮助模型理解输入边界。在预训练阶段,这些标记的正确使用对模型学习代码结构和逻辑至关重要。
Code Llama的标记使用策略
根据Code Llama开发团队的确认,在预训练过程中同时使用了BOS和EOS两个标记。这意味着每个训练样本的实际格式为:{BOS}{代码内容}{EOS}。这种设计具有几个显著优势:
-
明确的边界定义:BOS和EOS共同为模型提供了清晰的序列边界,有助于模型更好地理解代码片段的起止位置。
-
一致的输入格式:与推理阶段的使用方式保持一致,减少了训练与推理之间的差异。
-
注意力机制优化:BOS标记为模型提供了稳定的初始状态,而EOS标记则帮助模型学习何时终止生成。
实际应用中的注意事项
对于希望基于Code Llama进行继续预训练或微调的开发者,需要注意以下几点:
-
数据预处理:确保在准备训练数据时正确添加这两个标记,保持与原始预训练一致的格式。
-
标记嵌入:检查tokenizer是否包含这些特殊标记,以及它们对应的ID是否正确。
-
序列长度计算:在设置最大序列长度时,需要为BOS和EOS标记预留空间。
与其他模型的对比
不同于某些仅使用EOS标记的模型设计,Code Llama采用双标记策略。这种做法与LLaMA系列模型保持一致,体现了Meta在大型语言模型设计上的一贯思路。这种设计在代码生成任务中尤为重要,因为代码通常具有严格的语法结构和明确的结束标志。
理解这些细节对于有效使用和进一步开发Code Llama模型至关重要,特别是在处理代码相关任务时,正确的标记使用可以显著提升模型性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00