Code Llama预训练数据格式解析:BOS与EOS标记的使用实践
在大型语言模型的预训练过程中,数据格式的设计对模型性能有着重要影响。本文将深入探讨Code Llama预训练阶段特殊标记的使用方式,特别是BOS(Beginning of Sequence)和EOS(End of Sequence)这两个关键标记的具体应用。
特殊标记在预训练中的作用
BOS和EOS标记是Transformer架构语言模型中的两个基础控制标记。BOS标记表示序列的开始,通常用于初始化模型的注意力机制;EOS标记则标志序列的结束,帮助模型理解输入边界。在预训练阶段,这些标记的正确使用对模型学习代码结构和逻辑至关重要。
Code Llama的标记使用策略
根据Code Llama开发团队的确认,在预训练过程中同时使用了BOS和EOS两个标记。这意味着每个训练样本的实际格式为:{BOS}{代码内容}{EOS}。这种设计具有几个显著优势:
- 
明确的边界定义:BOS和EOS共同为模型提供了清晰的序列边界,有助于模型更好地理解代码片段的起止位置。
 - 
一致的输入格式:与推理阶段的使用方式保持一致,减少了训练与推理之间的差异。
 - 
注意力机制优化:BOS标记为模型提供了稳定的初始状态,而EOS标记则帮助模型学习何时终止生成。
 
实际应用中的注意事项
对于希望基于Code Llama进行继续预训练或微调的开发者,需要注意以下几点:
- 
数据预处理:确保在准备训练数据时正确添加这两个标记,保持与原始预训练一致的格式。
 - 
标记嵌入:检查tokenizer是否包含这些特殊标记,以及它们对应的ID是否正确。
 - 
序列长度计算:在设置最大序列长度时,需要为BOS和EOS标记预留空间。
 
与其他模型的对比
不同于某些仅使用EOS标记的模型设计,Code Llama采用双标记策略。这种做法与LLaMA系列模型保持一致,体现了Meta在大型语言模型设计上的一贯思路。这种设计在代码生成任务中尤为重要,因为代码通常具有严格的语法结构和明确的结束标志。
理解这些细节对于有效使用和进一步开发Code Llama模型至关重要,特别是在处理代码相关任务时,正确的标记使用可以显著提升模型性能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00