Glances项目高CPU占用问题的分析与优化方案
问题背景
Glances作为一款流行的系统监控工具,通常以低CPU占用率著称。然而在某些特定环境下,用户报告其CPU使用率异常升高,达到15-25%的水平,远高于预期的5%以下。这种情况尤其出现在运行大量容器的Proxmox虚拟化环境中。
问题根源分析
经过技术分析,高CPU占用主要源于以下几个因素:
-
进程列表处理开销:在运行30多个LXC容器的环境中,系统进程数量庞大(报告显示总进程数1091个,线程2347个)。Glances的进程列表插件在处理大量进程时会产生显著的计算开销。
-
全量数据更新机制:当前Glances的API设计会在每次请求时更新所有启用的插件数据,即使客户端只需要部分信息。这种全量更新的机制在频繁访问时会导致不必要的资源消耗。
-
Web界面渲染负载:默认配置下,Glances会尝试显示所有进程,这对浏览器渲染和后台数据处理都造成了压力。
优化解决方案
方案一:精简监控功能
通过命令行参数选择性启用必要插件:
glances --disable-plugin all --enable-plugin quicklook,cpu,mem,swap,load,processlist
这种配置下CPU使用率可降至8-15%,若进一步移除processlist插件,可降至3%左右。
方案二:分离监控实例
对于需要同时使用Web界面和API的场景,可运行两个独立实例:
# 完整功能实例(高负载)
glances -w
# 精简API实例(低负载)
glances --disable-plugin all --enable-plugin cpu,mem,fs,load,uptime,sensors -p 61209 -w --disable-webui
方案三:配置调优
在配置文件中添加以下参数:
[outputs]
max_processes_display=25
此设置限制Web界面显示的进程数量,减轻渲染负担。
技术原理深入
Glances的高CPU占用本质上反映了监控工具在复杂环境下面临的通用挑战:
-
进程枚举开销:获取全系统进程信息涉及频繁的系统调用和数据结构处理,这在进程数量大的系统中尤为明显。
-
数据一致性保证:监控工具需要确保不同插件数据的时间一致性,这导致即使只需要部分数据,也要进行全量采集。
-
实时性权衡:高刷新频率虽然提供了更实时的数据,但也带来了更高的CPU开销。
最佳实践建议
- 在生产环境中,应根据实际需求最小化启用的监控插件
- 对于容器密集环境,考虑使用基于cgroup的监控替代传统进程监控
- 调整数据刷新间隔,在实时性和资源消耗间取得平衡
- 对于API集成场景,优先使用专用精简实例
未来优化方向
Glances开发团队已注意到这个问题,计划优化API数据获取机制,实现按需更新插件数据。这将从根本上解决因少量数据请求触发全量更新的问题,同时保持各插件数据间的关联性。
通过以上分析和优化方案,用户可以在保持Glances核心监控功能的同时,有效控制系统资源消耗,使其在各种环境下都能高效运行。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
项目优选









