Glances项目高CPU占用问题的分析与优化方案
问题背景
Glances作为一款流行的系统监控工具,通常以低CPU占用率著称。然而在某些特定环境下,用户报告其CPU使用率异常升高,达到15-25%的水平,远高于预期的5%以下。这种情况尤其出现在运行大量容器的Proxmox虚拟化环境中。
问题根源分析
经过技术分析,高CPU占用主要源于以下几个因素:
-
进程列表处理开销:在运行30多个LXC容器的环境中,系统进程数量庞大(报告显示总进程数1091个,线程2347个)。Glances的进程列表插件在处理大量进程时会产生显著的计算开销。
-
全量数据更新机制:当前Glances的API设计会在每次请求时更新所有启用的插件数据,即使客户端只需要部分信息。这种全量更新的机制在频繁访问时会导致不必要的资源消耗。
-
Web界面渲染负载:默认配置下,Glances会尝试显示所有进程,这对浏览器渲染和后台数据处理都造成了压力。
优化解决方案
方案一:精简监控功能
通过命令行参数选择性启用必要插件:
glances --disable-plugin all --enable-plugin quicklook,cpu,mem,swap,load,processlist
这种配置下CPU使用率可降至8-15%,若进一步移除processlist插件,可降至3%左右。
方案二:分离监控实例
对于需要同时使用Web界面和API的场景,可运行两个独立实例:
# 完整功能实例(高负载)
glances -w
# 精简API实例(低负载)
glances --disable-plugin all --enable-plugin cpu,mem,fs,load,uptime,sensors -p 61209 -w --disable-webui
方案三:配置调优
在配置文件中添加以下参数:
[outputs]
max_processes_display=25
此设置限制Web界面显示的进程数量,减轻渲染负担。
技术原理深入
Glances的高CPU占用本质上反映了监控工具在复杂环境下面临的通用挑战:
-
进程枚举开销:获取全系统进程信息涉及频繁的系统调用和数据结构处理,这在进程数量大的系统中尤为明显。
-
数据一致性保证:监控工具需要确保不同插件数据的时间一致性,这导致即使只需要部分数据,也要进行全量采集。
-
实时性权衡:高刷新频率虽然提供了更实时的数据,但也带来了更高的CPU开销。
最佳实践建议
- 在生产环境中,应根据实际需求最小化启用的监控插件
- 对于容器密集环境,考虑使用基于cgroup的监控替代传统进程监控
- 调整数据刷新间隔,在实时性和资源消耗间取得平衡
- 对于API集成场景,优先使用专用精简实例
未来优化方向
Glances开发团队已注意到这个问题,计划优化API数据获取机制,实现按需更新插件数据。这将从根本上解决因少量数据请求触发全量更新的问题,同时保持各插件数据间的关联性。
通过以上分析和优化方案,用户可以在保持Glances核心监控功能的同时,有效控制系统资源消耗,使其在各种环境下都能高效运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00