pdarts 项目亮点解析
2025-05-22 18:57:55作者:廉彬冶Miranda
1. 项目的基础介绍
pdarts 是一个基于 PyTorch 的神经网络结构搜索(NAS)框架,它是“Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation”论文的官方实现。pdarts 通过渐进式的搜索策略,有效地解决了深度神经网络结构搜索中的深度差距问题,提高了搜索效率和网络性能。该框架在 CIFAR10 和 CIFAR100 数据集上取得了优异的成果,并在 ImageNet 数据集上实现了良好的性能。
2. 项目代码目录及介绍
项目的主要代码目录如下:
pdarts/
├── LICENSE
├── README.md
├── genotypes.py
├── model.py
├── model_search.py
├── operations.py
├── pipeline2.jpg
├── stages.png
├── test.py
├── test_imagenet.py
├── train_cifar.py
├── train_imagenet.py
├── train_search.py
├── utils.py
├── visualize.py
LICENSE:项目的许可协议文件。README.md:项目的说明文档,包含了项目介绍、使用方法、结果展示等。genotypes.py:包含了搜索到的网络架构基因型。model.py:定义了基本的网络模型结构。model_search.py:实现了网络结构的搜索算法。operations.py:定义了网络中的各种操作,如卷积、池化等。test.py和test_imagenet.py:用于测试在 CIFAR10 和 ImageNet 数据集上的模型性能。train_cifar.py、train_imagenet.py和train_search.py:分别为 CIFAR 数据集、ImageNet 数据集和搜索过程的训练脚本。utils.py:提供了项目通用的工具函数。visualize.py:用于可视化网络结构。
3. 项目亮点功能拆解
pdarts 的亮点功能主要包括:
- 渐进式搜索策略:通过逐步增加网络深度的方式,有效减少了搜索过程中的计算量。
 - 高效的搜索算法:在 CIFAR10 和 CIFAR100 数据集上,搜索过程仅需要 0.3 GPU 天(约 7 小时)。
 - 强大的泛化能力:搜索到的网络结构在 CIFAR100 等多类数据集上表现出良好的性能。
 - 易于部署:支持 PyTorch 0.4 或更高版本,便于用户快速部署和使用。
 
4. 项目主要技术亮点拆解
pdarts 的主要技术亮点包括:
- 差分搜索:使用差分进化算法进行网络结构的搜索,提高了搜索效率和准确性。
 - 深度桥接:通过桥接不同深度的网络结构,减少了搜索与评估之间的深度差距。
 - 模块化设计:
operations.py中的操作模块化设计,使得扩展和维护更为方便。 
5. 与同类项目对比的亮点
与同类项目相比,pdarts 的亮点在于:
- 搜索效率:相比于传统的 NAS 方法,
pdarts的搜索效率更高,所需时间更短。 - 性能表现:在多个数据集上,
pdarts搜索到的网络结构性能更优。 - 稳定性:
pdarts的搜索过程更加稳定,易于泛化到不同的网络架构和任务。 
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446