pdarts 项目亮点解析
2025-05-22 08:35:41作者:廉彬冶Miranda
1. 项目的基础介绍
pdarts 是一个基于 PyTorch 的神经网络结构搜索(NAS)框架,它是“Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation”论文的官方实现。pdarts 通过渐进式的搜索策略,有效地解决了深度神经网络结构搜索中的深度差距问题,提高了搜索效率和网络性能。该框架在 CIFAR10 和 CIFAR100 数据集上取得了优异的成果,并在 ImageNet 数据集上实现了良好的性能。
2. 项目代码目录及介绍
项目的主要代码目录如下:
pdarts/
├── LICENSE
├── README.md
├── genotypes.py
├── model.py
├── model_search.py
├── operations.py
├── pipeline2.jpg
├── stages.png
├── test.py
├── test_imagenet.py
├── train_cifar.py
├── train_imagenet.py
├── train_search.py
├── utils.py
├── visualize.py
LICENSE:项目的许可协议文件。README.md:项目的说明文档,包含了项目介绍、使用方法、结果展示等。genotypes.py:包含了搜索到的网络架构基因型。model.py:定义了基本的网络模型结构。model_search.py:实现了网络结构的搜索算法。operations.py:定义了网络中的各种操作,如卷积、池化等。test.py和test_imagenet.py:用于测试在 CIFAR10 和 ImageNet 数据集上的模型性能。train_cifar.py、train_imagenet.py和train_search.py:分别为 CIFAR 数据集、ImageNet 数据集和搜索过程的训练脚本。utils.py:提供了项目通用的工具函数。visualize.py:用于可视化网络结构。
3. 项目亮点功能拆解
pdarts 的亮点功能主要包括:
- 渐进式搜索策略:通过逐步增加网络深度的方式,有效减少了搜索过程中的计算量。
- 高效的搜索算法:在 CIFAR10 和 CIFAR100 数据集上,搜索过程仅需要 0.3 GPU 天(约 7 小时)。
- 强大的泛化能力:搜索到的网络结构在 CIFAR100 等多类数据集上表现出良好的性能。
- 易于部署:支持 PyTorch 0.4 或更高版本,便于用户快速部署和使用。
4. 项目主要技术亮点拆解
pdarts 的主要技术亮点包括:
- 差分搜索:使用差分进化算法进行网络结构的搜索,提高了搜索效率和准确性。
- 深度桥接:通过桥接不同深度的网络结构,减少了搜索与评估之间的深度差距。
- 模块化设计:
operations.py中的操作模块化设计,使得扩展和维护更为方便。
5. 与同类项目对比的亮点
与同类项目相比,pdarts 的亮点在于:
- 搜索效率:相比于传统的 NAS 方法,
pdarts的搜索效率更高,所需时间更短。 - 性能表现:在多个数据集上,
pdarts搜索到的网络结构性能更优。 - 稳定性:
pdarts的搜索过程更加稳定,易于泛化到不同的网络架构和任务。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1