MeterSphere自动化测试场景批量执行停止机制问题分析
问题背景
在MeterSphere v2.10.20-lts版本中,用户反馈了一个关于自动化测试场景批量执行停止机制的重要问题。当用户选择批量执行多个自动化测试场景并生成集合报告时,如果在任务中心点击停止按钮,系统只能停止当前正在执行的场景,而队列中后续等待执行的测试场景仍会继续执行,无法实现完全停止。
问题现象
具体表现为:
- 用户创建了一个包含多个测试场景(例如场景A、B、C)的批量执行任务
- 执行过程中,用户点击停止按钮
- 系统仅停止了当前正在执行的场景(如场景A)
- 队列中后续的场景(如场景B、C)仍会继续执行
- 集合报告的状态会被后续执行的场景覆盖修改
技术原因分析
经过深入分析,发现该问题的根本原因在于停止机制的设计实现上:
-
队列处理不完整:当前停止操作仅删除了
api_execution_queue_detail表中当前正在执行的记录,而没有清理后续等待执行的队列记录。 -
状态管理冲突:虽然停止操作会更新集合报告的状态为STOP,但后续场景执行完成后会再次将报告状态修改为SUCCESS或ERROR,导致停止状态被覆盖。
-
执行流程缺陷:当停止当前场景后,系统仍会继续执行队列中的下一个场景,因为停止操作没有完全中断整个执行流程。
解决方案
MeterSphere开发团队在v2.10.23版本中已修复此问题。修复方案主要包括:
-
完整队列清理:停止操作不仅会终止当前执行的任务,还会清理整个执行队列中的所有待执行记录。
-
状态管理优化:确保一旦报告状态被设置为STOP后,不会被后续操作覆盖。
-
执行流程改进:在停止操作时彻底中断整个批量执行流程,防止后续场景继续执行。
最佳实践建议
对于使用自动化测试批量执行功能的用户,建议:
-
及时升级:升级到v2.10.23或更高版本以获得完整的停止功能。
-
执行监控:在执行大批量测试场景时,密切监控执行状态,发现问题及时处理。
-
分批执行:对于关键测试场景,考虑分批执行以降低风险。
-
报告验证:停止操作后,验证集合报告状态是否确实停止,确保没有遗漏的场景继续执行。
总结
自动化测试的批量执行和停止功能是测试流程中的重要环节。MeterSphere团队及时响应并修复了批量执行停止不完全的问题,体现了对产品质量和用户体验的重视。用户应当保持系统更新,以获得最佳的使用体验和最完善的功能支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00