AIHawk自动求职代理中的黑名单机制优化实践
2025-05-06 15:11:48作者:钟日瑜
背景介绍
AIHawk自动求职代理是一款基于Python开发的LinkedIn职位自动申请工具,它能够帮助求职者自动化完成LinkedIn上的职位搜索和申请流程。在实际使用过程中,开发者发现系统存在两个关键问题:一是机器人会重复尝试申请之前失败的职位;二是职位标题黑名单功能对大小写敏感,导致过滤效果不佳。
问题分析
重复申请失败职位问题
系统原本的设计中,当机器人申请某个职位失败时,会将该职位信息记录到failed.json文件中。然而,系统缺乏对这些失败记录的读取和校验机制,导致机器人会反复尝试申请相同的失败职位,这不仅浪费系统资源,还可能因为重复申请给招聘方留下不良印象。
黑名单大小写敏感问题
职位标题黑名单功能(titleBlackList)原本的实现方式对大小写敏感,这意味着如果黑名单中的关键词是"manager",而职位标题是"Manager",系统将无法正确识别并过滤该职位。这种大小写敏感性大大降低了黑名单的实际过滤效果。
解决方案
失败职位记录校验机制
通过在is_blacklisted方法中新增get_all_failed_links辅助函数,系统现在能够:
- 读取failed.json文件中所有失败申请的职位链接
- 在申请新职位前检查该职位链接是否存在于失败记录中
- 如果存在则跳过该职位申请
这一改进显著提高了系统的效率,避免了无效的重复申请尝试。
黑名单大小写不敏感处理
对职位标题黑名单功能进行了以下优化:
- 将输入的职位标题统一转换为小写
- 将黑名单中的关键词也统一转换为小写进行比较
- 使用split方法将标题分解为单词进行精确匹配
这种处理方式确保了无论职位标题和黑名单关键词的大小写形式如何,系统都能正确识别并过滤不符合要求的职位。
技术实现细节
失败记录读取函数
get_all_failed_links函数采用稳健的错误处理机制:
- 使用try-except块处理文件不存在或格式错误的情况
- 从JSON数据中提取所有失败职位的链接
- 在任何异常情况下返回空列表,确保系统继续运行
黑名单检查逻辑优化
新的is_blacklisted方法实现了:
- 多条件综合判断:标题黑名单、公司黑名单和失败记录
- 详细的调试输出,便于问题排查
- 统一的大小写处理逻辑,提高匹配准确性
实际应用效果
经过这些优化后,AIHawk自动求职代理表现出以下改进:
- 申请成功率提高,避免了重复尝试已知会失败的职位
- 黑名单过滤效果显著增强,误判率降低
- 系统运行效率提升,减少了不必要的网络请求
- 用户体验改善,减少了手动干预的需求
总结与展望
本次优化展示了在自动化求职系统中健全的过滤机制的重要性。通过解决重复申请问题和改进黑名单功能,AIHawk的实用性和可靠性得到了显著提升。未来还可以考虑:
- 增加更智能的失败原因分析
- 实现动态调整申请策略
- 扩展黑名单匹配模式,支持正则表达式等高级功能
这些技术改进不仅适用于求职自动化领域,对于其他需要内容过滤和重复检测的自动化系统也具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137