Optax项目中的AdeMAMix优化器技术解析
2025-07-07 01:14:17作者:舒璇辛Bertina
概述
在深度学习领域,优化器是模型训练过程中至关重要的组件。Optax作为Google DeepMind开发的一个优化库,近期有开发者提议为其添加AdeMAMix优化器实现。AdeMAMix是一种基于Adam优化器的改进版本,通过引入双指数移动平均(EMA)机制来更好地利用历史梯度信息。
AdeMAMix优化器的技术原理
AdeMAMix优化器是对经典Adam优化器的一个创新性改进。其核心思想是同时维护两个不同的指数移动平均(EMA)梯度估计器:
- 一个EMA使用较大的β参数,保留更长时间的历史梯度信息
- 另一个EMA使用较小的β参数,关注最近的梯度变化
通过混合这两个不同时间尺度的梯度估计,AdeMAMix能够在保持Adam快速收敛特性的同时,更好地利用长期梯度信息,从而提高优化过程的稳定性和最终性能。
实现细节
在Optax项目中实现AdeMAMix优化器需要考虑以下几个技术要点:
- 参数初始化:需要为两个EMA分别设置不同的β参数
- 状态维护:需要同时跟踪两个EMA的状态以及混合比例
- 更新规则:需要设计合理的混合策略来结合两个EMA的梯度估计
- 数值稳定性:需要像Adam一样处理数值稳定性问题,如添加小常数防止除零
应用场景
AdeMAMix优化器特别适合以下场景:
- 训练深度神经网络时遇到收敛不稳定的情况
- 需要处理噪声较大的梯度信号的任务
- 长期依赖问题,即当前决策需要依赖较远历史信息的场景
- 非平稳优化问题,其中最优解可能随时间变化
性能优势
相比标准Adam优化器,AdeMAMix的主要优势包括:
- 更好的长期记忆能力:通过大β值的EMA保留更长时间的历史信息
- 更强的适应性:通过小β值的EMA快速响应最近的梯度变化
- 更稳定的收敛:双EMA机制可以平滑掉噪声梯度的影响
- 兼容性好:可以很容易地替换现有模型中的Adam优化器
总结
AdeMAMix优化器作为Adam家族的新成员,通过创新的双EMA机制扩展了传统优化器的能力边界。其在Optax项目中的实现将为深度学习社区提供一个强大的新工具,特别适合那些需要平衡长期记忆和短期适应性的复杂优化任务。随着该优化器的正式集成,研究人员和工程师可以更方便地探索其在各种深度学习应用中的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137