oneDNN在B60平台上的GPU内存管理问题分析与解决
问题背景
在Intel B60平台(Battlemage架构GPU)上运行基于oneDNN的GEMM(通用矩阵乘法)运算时,开发人员观察到一个异常现象:每次运行都会导致GPU内存使用量小幅增加,且这些内存不会被释放。相比之下,在Arc A770平台上运行相同的代码则不会出现这个问题。
技术环境分析
该问题出现在以下环境中:
- 硬件平台:Intel B60 GPU(Battlemage架构)
- 操作系统:Ubuntu 24.04(使用HWE内核)
- 编译器:Intel icpx 13.2.0
- oneDNN版本:最初测试的是v3.6.1,后续测试了rls-v3.8分支
- 驱动程序:Level Zero 1.6.32961和OpenCL 25.09.32961.7
问题现象详细描述
开发人员使用xpu-smi工具监控GPU内存使用情况时发现,每次执行GEMM运算后,GPU内存使用量都会增加约12MB左右。这种内存增长是累积性的,随着程序运行时间的增加,最终可能导致GPU内存耗尽。
深入技术分析
经过技术团队深入调查,发现这个问题涉及多个层面的因素:
-
内存池管理机制:oneDNN使用zero-pool(零初始化GPU内存池)来优化性能,这些内存池是按引擎(engine)对象分配的。
-
引擎生命周期:在原始测试代码中,每次迭代都创建新的引擎对象,导致zero-pool内存不断累积。
-
版本差异:在oneDNN v3.6.1中存在一个已知的内存泄漏问题,特别是在处理不同引擎对象时。这个问题在rls-v3.8分支中已通过特定提交修复。
-
平台特性:Battlemage架构的GPU内存管理行为与Arc架构存在差异,这可能放大了内存管理问题的影响。
解决方案验证
技术团队提出了多种解决方案并进行了验证:
-
设置环境变量:尝试通过
ONEDNN_PRIMITIVE_CACHE_CAPACITY=0禁用primitive缓存,但发现这并不能完全解决问题。 -
升级oneDNN版本:切换到rls-v3.8分支后,内存泄漏问题得到显著改善。测试数据显示内存使用在几次迭代后趋于稳定。
-
重用引擎对象:保持引擎对象的单例模式,避免重复创建,这可以防止zero-pool内存的重复分配。
-
驱动程序选择:测试发现使用OpenCL驱动比Level Zero驱动表现出更轻微的内存增长现象。
最佳实践建议
基于此问题的分析,我们建议开发人员:
-
版本控制:使用oneDNN rls-v3.8或更高版本,其中包含了相关内存泄漏问题的修复。
-
资源管理:在应用程序中重用引擎对象,而不是每次运算都创建新实例。
-
监控工具:使用
zesMemoryGetState等工具准确监控GPU内存使用情况,而不是仅依赖外部工具。 -
环境配置:根据实际需求选择合适的运行时驱动(Level Zero或OpenCL)。
结论
GPU内存管理是高性能计算中的关键问题。oneDNN团队通过版本迭代解决了B60平台上的特定内存泄漏问题。开发人员应当注意引擎对象的生命周期管理,并保持oneDNN库的及时更新,以确保获得最佳的内存使用效率和计算性能。
对于使用Battlemage架构GPU的开发人员,特别建议采用上述最佳实践,以避免潜在的内存问题并优化应用程序性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00