oneDNN在B60平台上的GPU内存管理问题分析与解决
问题背景
在Intel B60平台(Battlemage架构GPU)上运行基于oneDNN的GEMM(通用矩阵乘法)运算时,开发人员观察到一个异常现象:每次运行都会导致GPU内存使用量小幅增加,且这些内存不会被释放。相比之下,在Arc A770平台上运行相同的代码则不会出现这个问题。
技术环境分析
该问题出现在以下环境中:
- 硬件平台:Intel B60 GPU(Battlemage架构)
- 操作系统:Ubuntu 24.04(使用HWE内核)
- 编译器:Intel icpx 13.2.0
- oneDNN版本:最初测试的是v3.6.1,后续测试了rls-v3.8分支
- 驱动程序:Level Zero 1.6.32961和OpenCL 25.09.32961.7
问题现象详细描述
开发人员使用xpu-smi工具监控GPU内存使用情况时发现,每次执行GEMM运算后,GPU内存使用量都会增加约12MB左右。这种内存增长是累积性的,随着程序运行时间的增加,最终可能导致GPU内存耗尽。
深入技术分析
经过技术团队深入调查,发现这个问题涉及多个层面的因素:
-
内存池管理机制:oneDNN使用zero-pool(零初始化GPU内存池)来优化性能,这些内存池是按引擎(engine)对象分配的。
-
引擎生命周期:在原始测试代码中,每次迭代都创建新的引擎对象,导致zero-pool内存不断累积。
-
版本差异:在oneDNN v3.6.1中存在一个已知的内存泄漏问题,特别是在处理不同引擎对象时。这个问题在rls-v3.8分支中已通过特定提交修复。
-
平台特性:Battlemage架构的GPU内存管理行为与Arc架构存在差异,这可能放大了内存管理问题的影响。
解决方案验证
技术团队提出了多种解决方案并进行了验证:
-
设置环境变量:尝试通过
ONEDNN_PRIMITIVE_CACHE_CAPACITY=0禁用primitive缓存,但发现这并不能完全解决问题。 -
升级oneDNN版本:切换到rls-v3.8分支后,内存泄漏问题得到显著改善。测试数据显示内存使用在几次迭代后趋于稳定。
-
重用引擎对象:保持引擎对象的单例模式,避免重复创建,这可以防止zero-pool内存的重复分配。
-
驱动程序选择:测试发现使用OpenCL驱动比Level Zero驱动表现出更轻微的内存增长现象。
最佳实践建议
基于此问题的分析,我们建议开发人员:
-
版本控制:使用oneDNN rls-v3.8或更高版本,其中包含了相关内存泄漏问题的修复。
-
资源管理:在应用程序中重用引擎对象,而不是每次运算都创建新实例。
-
监控工具:使用
zesMemoryGetState等工具准确监控GPU内存使用情况,而不是仅依赖外部工具。 -
环境配置:根据实际需求选择合适的运行时驱动(Level Zero或OpenCL)。
结论
GPU内存管理是高性能计算中的关键问题。oneDNN团队通过版本迭代解决了B60平台上的特定内存泄漏问题。开发人员应当注意引擎对象的生命周期管理,并保持oneDNN库的及时更新,以确保获得最佳的内存使用效率和计算性能。
对于使用Battlemage架构GPU的开发人员,特别建议采用上述最佳实践,以避免潜在的内存问题并优化应用程序性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00