Flow 项目安装与使用教程
2024-09-16 01:15:21作者:裴麒琰
1. 项目目录结构及介绍
Flow 项目的目录结构如下:
flow/
├── flow/
│ ├── environments/
│ ├── examples/
│ ├── networks/
│ ├── utils/
│ ├── visualization/
│ └── __init__.py
├── setup.py
├── README.md
├── requirements.txt
└── docs/
目录结构介绍
-
flow/: 项目的主目录,包含了项目的核心代码。
- environments/: 包含各种环境配置文件,用于定义不同的交通场景。
- examples/: 包含一些示例代码,展示了如何使用 Flow 项目。
- networks/: 包含交通网络的定义文件,用于模拟不同的交通网络。
- utils/: 包含一些实用工具函数和类,用于辅助项目的开发和使用。
- visualization/: 包含可视化相关的代码,用于展示交通模拟的结果。
- init.py: 初始化文件,使得
flow目录可以作为一个 Python 包导入。
-
setup.py: 项目的安装脚本,用于安装项目所需的依赖。
-
README.md: 项目的说明文档,包含了项目的简介、安装方法和使用说明。
-
requirements.txt: 项目所需的依赖列表,可以通过
pip install -r requirements.txt安装所有依赖。 -
docs/: 包含项目的文档,通常是一些 Markdown 文件,用于详细介绍项目的各个模块和功能。
2. 项目的启动文件介绍
Flow 项目的启动文件通常是 flow/examples/ 目录下的示例代码。以下是一个典型的启动文件示例:
from flow.core.experiment import Experiment
from flow.envs.ring.lane_change_env import LaneChangeAccelEnv
from flow.networks.ring import RingNetwork
# 定义网络
network = RingNetwork(
name="ring_network",
vehicles=vehicles,
net_params=net_params
)
# 定义环境
env = LaneChangeAccelEnv(
env_params=env_params,
sim_params=sim_params,
network=network,
simulator='traci'
)
# 创建实验
exp = Experiment(env)
# 运行实验
_ = exp.run(num_runs=1, num_steps=1000)
启动文件介绍
- Experiment: 实验类,用于运行交通模拟实验。
- LaneChangeAccelEnv: 环境类,定义了交通环境的行为和规则。
- RingNetwork: 网络类,定义了交通网络的结构和参数。
- exp.run(): 运行实验的方法,
num_runs表示实验的次数,num_steps表示每个实验的步数。
3. 项目的配置文件介绍
Flow 项目的配置文件通常位于 flow/environments/ 和 flow/networks/ 目录下。以下是一个典型的配置文件示例:
环境配置文件 (flow/environments/ring/lane_change_env.py)
from flow.envs.base import Env
class LaneChangeAccelEnv(Env):
def __init__(self, env_params, sim_params, network, simulator='traci'):
super().__init__(env_params, sim_params, network, simulator)
self.action_space = Box(low=-1, high=1, shape=(1,))
self.observation_space = Box(low=0, high=1, shape=(5,))
def step(self, rl_actions):
obs, reward, done, info = super().step(rl_actions)
return obs, reward, done, info
网络配置文件 (flow/networks/ring.py)
from flow.networks import Network
class RingNetwork(Network):
def specify_nodes(self, net_params):
return [{"id": "ring", "x": 0, "y": 0}]
def specify_edges(self, net_params):
return [{"id": "edge", "from": "ring", "to": "ring", "length": 230}]
def specify_routes(self, net_params):
return {"edge": ["edge"]}
配置文件介绍
- 环境配置文件: 定义了环境的行为和规则,包括动作空间 (
action_space) 和观测空间 (observation_space)。 - 网络配置文件: 定义了交通网络的结构,包括节点 (
nodes)、边 (edges) 和路由 (routes)。
通过这些配置文件,用户可以自定义交通环境和网络,以满足不同的模拟需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869