Flow 项目安装与使用教程
2024-09-16 10:09:20作者:裴麒琰
1. 项目目录结构及介绍
Flow 项目的目录结构如下:
flow/
├── flow/
│ ├── environments/
│ ├── examples/
│ ├── networks/
│ ├── utils/
│ ├── visualization/
│ └── __init__.py
├── setup.py
├── README.md
├── requirements.txt
└── docs/
目录结构介绍
-
flow/: 项目的主目录,包含了项目的核心代码。
- environments/: 包含各种环境配置文件,用于定义不同的交通场景。
- examples/: 包含一些示例代码,展示了如何使用 Flow 项目。
- networks/: 包含交通网络的定义文件,用于模拟不同的交通网络。
- utils/: 包含一些实用工具函数和类,用于辅助项目的开发和使用。
- visualization/: 包含可视化相关的代码,用于展示交通模拟的结果。
- init.py: 初始化文件,使得
flow目录可以作为一个 Python 包导入。
-
setup.py: 项目的安装脚本,用于安装项目所需的依赖。
-
README.md: 项目的说明文档,包含了项目的简介、安装方法和使用说明。
-
requirements.txt: 项目所需的依赖列表,可以通过
pip install -r requirements.txt安装所有依赖。 -
docs/: 包含项目的文档,通常是一些 Markdown 文件,用于详细介绍项目的各个模块和功能。
2. 项目的启动文件介绍
Flow 项目的启动文件通常是 flow/examples/ 目录下的示例代码。以下是一个典型的启动文件示例:
from flow.core.experiment import Experiment
from flow.envs.ring.lane_change_env import LaneChangeAccelEnv
from flow.networks.ring import RingNetwork
# 定义网络
network = RingNetwork(
name="ring_network",
vehicles=vehicles,
net_params=net_params
)
# 定义环境
env = LaneChangeAccelEnv(
env_params=env_params,
sim_params=sim_params,
network=network,
simulator='traci'
)
# 创建实验
exp = Experiment(env)
# 运行实验
_ = exp.run(num_runs=1, num_steps=1000)
启动文件介绍
- Experiment: 实验类,用于运行交通模拟实验。
- LaneChangeAccelEnv: 环境类,定义了交通环境的行为和规则。
- RingNetwork: 网络类,定义了交通网络的结构和参数。
- exp.run(): 运行实验的方法,
num_runs表示实验的次数,num_steps表示每个实验的步数。
3. 项目的配置文件介绍
Flow 项目的配置文件通常位于 flow/environments/ 和 flow/networks/ 目录下。以下是一个典型的配置文件示例:
环境配置文件 (flow/environments/ring/lane_change_env.py)
from flow.envs.base import Env
class LaneChangeAccelEnv(Env):
def __init__(self, env_params, sim_params, network, simulator='traci'):
super().__init__(env_params, sim_params, network, simulator)
self.action_space = Box(low=-1, high=1, shape=(1,))
self.observation_space = Box(low=0, high=1, shape=(5,))
def step(self, rl_actions):
obs, reward, done, info = super().step(rl_actions)
return obs, reward, done, info
网络配置文件 (flow/networks/ring.py)
from flow.networks import Network
class RingNetwork(Network):
def specify_nodes(self, net_params):
return [{"id": "ring", "x": 0, "y": 0}]
def specify_edges(self, net_params):
return [{"id": "edge", "from": "ring", "to": "ring", "length": 230}]
def specify_routes(self, net_params):
return {"edge": ["edge"]}
配置文件介绍
- 环境配置文件: 定义了环境的行为和规则,包括动作空间 (
action_space) 和观测空间 (observation_space)。 - 网络配置文件: 定义了交通网络的结构,包括节点 (
nodes)、边 (edges) 和路由 (routes)。
通过这些配置文件,用户可以自定义交通环境和网络,以满足不同的模拟需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140