AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以快速部署在AWS云环境中。这些容器经过优化和测试,能够提供高性能的深度学习推理和训练能力。
近日,AWS发布了PyTorch 2.5.1版本的推理专用Docker镜像,支持Python 3.11环境。这些镜像分为CPU和GPU两个版本,均基于Ubuntu 22.04操作系统构建。对于需要在AWS SageMaker服务上部署PyTorch模型推理的用户来说,这些预构建的容器提供了开箱即用的解决方案。
镜像版本详情
本次发布的PyTorch推理镜像包含两个主要变体:
-
CPU版本:适用于不需要GPU加速的推理场景,镜像标签为
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.9
。该镜像包含了PyTorch 2.5.1及其CPU版本的相关组件。 -
GPU版本:针对需要CUDA加速的推理任务,基于CUDA 12.4构建,镜像标签为
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.9
。除了包含PyTorch的GPU版本外,还预装了CUDA相关的库文件。
关键软件包版本
两个镜像都预装了丰富的Python包和系统依赖,确保用户可以直接使用而无需额外配置:
- 核心PyTorch组件:包括torch 2.5.1、torchvision 0.20.1、torchaudio 2.5.1等
- 数据处理库:numpy 2.1.3、pandas 2.2.3、scikit-learn 1.5.2、scipy 1.14.1
- 图像处理:opencv-python 4.10.0.84、pillow 11.0.0
- 模型服务:torchserve 0.12.0和torch-model-archiver 0.12.0
- AWS集成:boto3 1.35.56、awscli 1.35.22等
GPU版本额外包含了CUDA 12.4相关的库文件,如cuBLAS和cuDNN,为深度学习推理提供硬件加速支持。
技术特点与优势
这些预构建的Docker镜像具有以下技术优势:
-
版本兼容性:基于PyTorch 2.5.1稳定版本构建,确保API稳定性和功能完整性。
-
性能优化:针对AWS基础设施进行了优化,能够充分利用云环境的计算资源。
-
简化部署:预装了模型服务工具torchserve,支持快速部署PyTorch模型为生产级服务。
-
安全基础:基于Ubuntu 22.04 LTS构建,提供长期安全更新支持。
-
开发友好:包含了常用的开发工具如emacs,方便用户直接在容器内进行调试和开发。
使用场景
这些镜像特别适合以下应用场景:
- 在AWS SageMaker服务上部署PyTorch模型推理
- 构建可扩展的机器学习推理服务
- 快速原型开发和测试PyTorch模型
- 需要标准化、可重复的模型部署环境
对于需要在AWS云上运行PyTorch推理工作负载的用户,这些预构建的Docker镜像提供了即用型解决方案,大大简化了环境配置和部署流程。用户可以根据计算需求选择CPU或GPU版本,快速启动推理服务。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









