首页
/ AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

2025-07-07 08:34:22作者:韦蓉瑛

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以快速部署在AWS云环境中。这些容器经过优化和测试,能够提供高性能的深度学习推理和训练能力。

近日,AWS发布了PyTorch 2.5.1版本的推理专用Docker镜像,支持Python 3.11环境。这些镜像分为CPU和GPU两个版本,均基于Ubuntu 22.04操作系统构建。对于需要在AWS SageMaker服务上部署PyTorch模型推理的用户来说,这些预构建的容器提供了开箱即用的解决方案。

镜像版本详情

本次发布的PyTorch推理镜像包含两个主要变体:

  1. CPU版本:适用于不需要GPU加速的推理场景,镜像标签为pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.9。该镜像包含了PyTorch 2.5.1及其CPU版本的相关组件。

  2. GPU版本:针对需要CUDA加速的推理任务,基于CUDA 12.4构建,镜像标签为pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.9。除了包含PyTorch的GPU版本外,还预装了CUDA相关的库文件。

关键软件包版本

两个镜像都预装了丰富的Python包和系统依赖,确保用户可以直接使用而无需额外配置:

  • 核心PyTorch组件:包括torch 2.5.1、torchvision 0.20.1、torchaudio 2.5.1等
  • 数据处理库:numpy 2.1.3、pandas 2.2.3、scikit-learn 1.5.2、scipy 1.14.1
  • 图像处理:opencv-python 4.10.0.84、pillow 11.0.0
  • 模型服务:torchserve 0.12.0和torch-model-archiver 0.12.0
  • AWS集成:boto3 1.35.56、awscli 1.35.22等

GPU版本额外包含了CUDA 12.4相关的库文件,如cuBLAS和cuDNN,为深度学习推理提供硬件加速支持。

技术特点与优势

这些预构建的Docker镜像具有以下技术优势:

  1. 版本兼容性:基于PyTorch 2.5.1稳定版本构建,确保API稳定性和功能完整性。

  2. 性能优化:针对AWS基础设施进行了优化,能够充分利用云环境的计算资源。

  3. 简化部署:预装了模型服务工具torchserve,支持快速部署PyTorch模型为生产级服务。

  4. 安全基础:基于Ubuntu 22.04 LTS构建,提供长期安全更新支持。

  5. 开发友好:包含了常用的开发工具如emacs,方便用户直接在容器内进行调试和开发。

使用场景

这些镜像特别适合以下应用场景:

  • 在AWS SageMaker服务上部署PyTorch模型推理
  • 构建可扩展的机器学习推理服务
  • 快速原型开发和测试PyTorch模型
  • 需要标准化、可重复的模型部署环境

对于需要在AWS云上运行PyTorch推理工作负载的用户,这些预构建的Docker镜像提供了即用型解决方案,大大简化了环境配置和部署流程。用户可以根据计算需求选择CPU或GPU版本,快速启动推理服务。

登录后查看全文
热门项目推荐