KerasPersonLab使用手册
2024-09-28 01:20:48作者:邓越浪Henry
1. 目录结构及介绍
KerasPersonLab项目基于Keras与TensorFlow实现多人姿态估计和实例分割。下面是该项目的基本目录结构以及主要文件的功能简介:
.
├── LICENSE # 许可证文件
├── README.md # 项目说明文档
├── bilinear.py # 双线性插值相关功能
├── config.py # 配置文件,用于设置训练参数
├── data_generator.py # 数据生成器,处理数据输入
├── data_iterator.py # 数据迭代器逻辑
├── data_prep.py # 数据预处理脚本
├── demo.ipynb # 演示如何进行模型推理的Jupyter Notebook
├── frozen_batchnorm.py # 冻结批量归一化层的代码
├── generate_hdf5.py # 脚本,用于构造所需的HDF5格式的数据集
├── model.py # 主模型定义,包括网络架构
├── plot.py # 可视化结果的工具函数
├── polyak_callback.py # 实现Polyak平均策略的回调函数
├── post_proc.py # 后处理步骤,从预测结果到最终输出的转换
├── resnet101.py # ResNet-101模型定义或加载
├── resnet50.py # ResNet-50模型定义或加载
├── tf_data_generator.py # 使用TensorFlow特性的数据生成器
├── train.py # 训练主程序
└── transformer.py # 数据变换相关操作
2. 项目的启动文件介绍
-
train.py: 核心的训练脚本。在准备好了数据集和配置之后,通过运行这个脚本可以开始模型的训练过程。它负责初始化模型,配置训练过程(如学习率调度、损失函数等),并开始多GPU或单GPU环境下的训练。
-
demo.ipynb: 这是一个Jupyter Notebook文件,主要用于演示如何加载训练好的模型并进行推理,展示模型预测的人体关键点和实例分割结果。
3. 项目的配置文件介绍
- config.py: 包含了所有训练和测试过程中需要的重要参数。你可以在这里自定义输入图像的分辨率、使用的GPU数量、是否冻结BatchNorm层的权重等关键训练选项。此外,如果要调整更底层的网络结构或优化算法,可能还需直接修改
train.py或其他相关源代码文件。
为了开始使用KerasPersonLab,首先确保你的开发环境已经安装了必要的依赖,如TensorFlow 1.7、Keras 2.1.3等,并且符合项目的测试环境要求。按照generate_hdf5.py中的指南准备COCO数据集,并修改相应的路径。接下来,根据你的实验需求修改config.py文件,最后执行train.py以开始训练模型。对于模型的测试和应用,参考demo.ipynb来体验实例分割和人体姿态估计的效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.65 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
485
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
314
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
747
180
Ascend Extension for PyTorch
Python
302
344
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882