首页
/ KerasPersonLab使用手册

KerasPersonLab使用手册

2024-09-28 17:19:35作者:邓越浪Henry

1. 目录结构及介绍

KerasPersonLab项目基于Keras与TensorFlow实现多人姿态估计和实例分割。下面是该项目的基本目录结构以及主要文件的功能简介:

.
├── LICENSE                # 许可证文件
├── README.md              # 项目说明文档
├── bilinear.py            # 双线性插值相关功能
├── config.py              # 配置文件,用于设置训练参数
├── data_generator.py      # 数据生成器,处理数据输入
├── data_iterator.py       # 数据迭代器逻辑
├── data_prep.py           # 数据预处理脚本
├── demo.ipynb             # 演示如何进行模型推理的Jupyter Notebook
├── frozen_batchnorm.py    # 冻结批量归一化层的代码
├── generate_hdf5.py       # 脚本,用于构造所需的HDF5格式的数据集
├── model.py               # 主模型定义,包括网络架构
├── plot.py                # 可视化结果的工具函数
├── polyak_callback.py     # 实现Polyak平均策略的回调函数
├── post_proc.py           # 后处理步骤,从预测结果到最终输出的转换
├── resnet101.py           # ResNet-101模型定义或加载
├── resnet50.py            # ResNet-50模型定义或加载
├── tf_data_generator.py   # 使用TensorFlow特性的数据生成器
├── train.py               # 训练主程序
└── transformer.py         # 数据变换相关操作

2. 项目的启动文件介绍

  • train.py: 核心的训练脚本。在准备好了数据集和配置之后,通过运行这个脚本可以开始模型的训练过程。它负责初始化模型,配置训练过程(如学习率调度、损失函数等),并开始多GPU或单GPU环境下的训练。

  • demo.ipynb: 这是一个Jupyter Notebook文件,主要用于演示如何加载训练好的模型并进行推理,展示模型预测的人体关键点和实例分割结果。

3. 项目的配置文件介绍

  • config.py: 包含了所有训练和测试过程中需要的重要参数。你可以在这里自定义输入图像的分辨率、使用的GPU数量、是否冻结BatchNorm层的权重等关键训练选项。此外,如果要调整更底层的网络结构或优化算法,可能还需直接修改train.py或其他相关源代码文件。

为了开始使用KerasPersonLab,首先确保你的开发环境已经安装了必要的依赖,如TensorFlow 1.7、Keras 2.1.3等,并且符合项目的测试环境要求。按照generate_hdf5.py中的指南准备COCO数据集,并修改相应的路径。接下来,根据你的实验需求修改config.py文件,最后执行train.py以开始训练模型。对于模型的测试和应用,参考demo.ipynb来体验实例分割和人体姿态估计的效果。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8