Supervision库中KeyPoints类的数据格式解析与使用指南
2025-05-07 14:07:20作者:翟萌耘Ralph
关键点检测数据格式详解
Supervision作为计算机视觉领域的重要工具库,其KeyPoints类在处理关键点检测任务时扮演着核心角色。本文深入解析KeyPoints类的正确数据格式及使用方法,帮助开发者避免常见错误。
关键点数据结构
KeyPoints类设计用于处理多目标的关键点数据,其核心数据结构要求三维数组:
- 第一维度:表示检测到的目标数量(如人脸、人体等)
- 第二维度:表示每个目标包含的关键点数量
- 第三维度:表示每个关键点的坐标维度(通常为2,表示x,y坐标)
这种设计使得KeyPoints类能够同时处理多个目标的关键点信息,为复杂场景下的关键点检测提供了便利。
常见错误解析
开发者常犯的错误是直接将单个目标的二维关键点数组传入KeyPoints类。例如,当处理68个人脸关键点时,错误地使用形状为(68,2)的数组,而实际上需要将其包装为(1,68,2)的三维数组。
正确使用示例
以下展示如何正确构建KeyPoints对象:
import numpy as np
import supervision as sv
# 单个目标的68个人脸关键点
face_keypoints = np.random.rand(68, 2) * 100 # 模拟数据
# 正确格式:包装为三维数组
keypoints = sv.KeyPoints(
xy=face_keypoints[np.newaxis, :, :], # 形状变为(1,68,2)
confidence=np.ones((1, 68)), # 置信度数组
class_id=np.array([0]) # 类别ID
)
多目标处理
当场景中存在多个目标时,KeyPoints类能高效处理:
# 两个目标,各有5个关键点
multi_keypoints = np.array([
[[10,20], [30,40], [50,60], [70,80], [90,100]], # 目标1
[[15,25], [35,45], [55,65], [75,85], [95,105]] # 目标2
])
keypoints = sv.KeyPoints(
xy=multi_keypoints,
confidence=np.ones((2,5)),
class_id=np.array([0,1])
)
可视化应用
结合Supervision的可视化工具,可以直观展示关键点检测结果:
from supervision.draw.color import Color
# 创建关键点连接关系
edges = [(i,i+1) for i in range(67)] + [(67,0)] # 连接所有关键点形成闭环
# 可视化
annotator = sv.EdgeAnnotator(edges=edges, color=Color.RED)
annotated_image = annotator.annotate(image.copy(), keypoints)
最佳实践建议
- 始终检查输入数组的维度是否符合(目标数,关键点数,坐标维度)的要求
- 对于单个目标,使用np.newaxis增加维度
- 置信度数组的形状应与关键点数组的前两维匹配
- 类别ID数组长度应与目标数量一致
通过正确理解和使用KeyPoints类的数据结构,开发者可以更高效地处理各种关键点检测任务,从人脸识别到姿态估计等应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355