ScrapeGraphAI项目中的Ollama模型tokenization实现解析
在ScrapeGraphAI项目中,tokenization(分词)功能的实现对于处理大语言模型(LLM)的输入输出至关重要。本文将深入探讨该项目中针对Ollama模型的tokenization实现过程及其技术细节。
tokenization的重要性
tokenization是将文本转换为模型可理解的token序列的过程,对于控制输入长度、计算成本和优化性能都至关重要。在ScrapeGraphAI中,tokenization功能最初是为OpenAI和Mistral模型实现的,但Ollama模型的tokenization存在一些特殊挑战。
实现过程中的关键问题
项目初期尝试在ScriptCreatorGraph中使用Ollama模型时遇到了tokenization相关的错误。核心问题在于Ollama模型的属性访问方式与其他模型不同——需要使用llm_model.model
而非llm_model.model_name
来获取模型名称。
更深入的技术挑战在于,Ollama目前尚未提供官方的tokenization端点,这导致Langchain框架中的get_num_tokens
实现也不完整。这一限制使得精确计算token数量变得困难。
临时解决方案
作为过渡方案,项目采用了以下技术路线:
- 修改属性访问方式以正确识别Ollama模型
- 暂时依赖Langchain现有的API实现
- 优化了chunking代码的性能,避免对每个单词都调用tokenizer
值得注意的是,对于Mistral模型,直接对每个单词进行tokenization会导致严重的性能问题(处理长网页可能需要数秒/词)。因此项目转而使用semchunk方法,显著减少了tokenizer调用次数。
未来改进方向
随着Ollama官方tokenization端点的推出(已有相关PR),项目将能够实现更精确的token计数。届时,Langchain框架很可能会更新其API,ScrapeGraphAI也将随之升级而无需大规模修改代码。
技术选型考量
项目团队曾考虑过使用Hugging Face包直接下载tokenizer的替代方案,但考虑到需要额外处理模型ID和API密钥(特别是对于Llama 3.1等受限模型),最终决定等待Ollama原生解决方案,以保持代码简洁性。
这一系列实现展示了ScrapeGraphAI项目在处理不同LLM模型时的技术适应能力和对性能优化的持续关注,为开发者提供了稳定可靠的大语言模型集成方案。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









