NotACracker/COTR项目模型自定义教程
2025-07-04 17:46:22作者:侯霆垣
模型组件概述
在NotACracker/COTR项目中,3D目标检测模型通常由6个核心组件构成,每个组件承担不同的功能:
- 编码器(Encoder):负责原始点云数据的初步处理,包括体素化(voxelization)和特征提取
- 骨干网络(Backbone):作为特征提取的主干网络,通常采用全卷积结构
- 颈部网络(Neck):连接骨干网络和检测头的中间模块,用于特征融合
- 检测头(Head):执行特定任务的模块,如边界框预测
- RoI提取器(RoI Extractor):从特征图中提取感兴趣区域特征
- 损失函数(Loss):计算预测结果与真实标签之间的差异
自定义编码器开发指南
1. 创建新的体素编码器
以HardVFE(硬体素特征编码器)为例,展示如何实现自定义编码器:
import torch.nn as nn
from ..builder import VOXEL_ENCODERS
@VOXEL_ENCODERS.register_module()
class HardVFE(nn.Module):
def __init__(self, arg1, arg2):
super().__init__()
# 初始化参数和层结构
self.conv1 = nn.Conv3d(...)
def forward(self, x):
# 实现前向传播逻辑
features = self.conv1(x)
return features
2. 模块注册与导入
有三种方式注册新模块:
- 直接导入:在
__init__.py中添加导入语句 - 动态导入:通过配置文件动态注册
- 混合导入:结合前两种方式
推荐使用动态导入方式,避免直接修改源码:
custom_imports = dict(
imports=['mmdet3d.models.voxel_encoders.HardVFE'],
allow_failed_imports=False)
3. 配置使用
在模型配置文件中指定新编码器:
model = dict(
voxel_encoder=dict(
type='HardVFE',
arg1=value1,
arg2=value2
)
)
自定义骨干网络实现
1. 实现SECOND骨干网络
SECOND网络是3D检测中常用的稀疏卷积网络:
from ..builder import BACKBONES
@BACKBONES.register_module()
class SECOND(BaseModule):
def __init__(self, in_channels, out_channels):
super().__init__()
# 构建稀疏卷积层
self.sparse_conv = SparseSequential(
SparseConv3d(in_channels, 64, 3),
SparseBatchNorm3d(64),
SparseReLU()
)
def forward(self, sparse_tensor):
# 处理稀疏体素数据
features = self.sparse_conv(sparse_tensor)
return features
2. 配置示例
backbone=dict(
type='SECOND',
in_channels=4,
out_channels=[64, 128, 256]
)
颈部网络开发实践
1. 实现SECONDFPN
特征金字塔网络(FPN)是多尺度特征融合的经典结构:
@NECKS.register_module()
class SECONDFPN(BaseModule):
def __init__(self, in_channels, out_channels):
super().__init__()
# 构建上采样和下采样路径
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
def forward(self, inputs):
# 实现特征融合逻辑
laterals = [lateral_conv(inputs[i])
for i, lateral_conv in enumerate(self.lateral_convs)]
# 上采样和特征融合
return tuple(fpn_convs)
2. 配置参考
neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
out_channels=256
)
高级:RoI Head开发
1. PartA2检测头实现
PartA2是两阶段检测器的典型代表:
@HEADS.register_module()
class PartA2BboxHead(BaseModule):
def __init__(self, num_classes, seg_in_channels):
super().__init__()
# 构建分割和部件预测分支
self.seg_conv = nn.Sequential(...)
self.part_conv = nn.Sequential(...)
def forward(self, seg_feats, part_feats):
# 融合分割和部件特征
fused_feats = torch.cat([seg_feats, part_feats], dim=1)
return cls_score, bbox_pred
2. RoI Head集成
@HEADS.register_module()
class PartAggregationROIHead(Base3DRoIHead):
def __init__(self, semantic_head, bbox_head):
super().__init__()
self.semantic_head = build_head(semantic_head)
self.bbox_head = build_head(bbox_head)
def _bbox_forward(self, seg_feats, part_feats, rois):
# RoI特征提取和预测
pooled_feats = self.roi_extractor(feats, rois)
return self.bbox_head(pooled_feats)
自定义损失函数
1. 实现MyLoss
@LOSSES.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean'):
super().__init__()
self.reduction = reduction
def forward(self, pred, target):
loss = (pred - target).abs()
return loss.mean() if self.reduction == 'mean' else loss.sum()
2. 配置使用
loss_bbox=dict(
type='MyLoss',
reduction='sum',
loss_weight=1.0
)
最佳实践建议
- 模块化设计:每个组件应保持功能单一性
- 继承现有基类:充分利用已有基础功能
- 配置驱动:尽量通过配置文件控制模块行为
- 测试验证:新模块应通过单元测试验证正确性
- 性能分析:使用profiler评估新模块的计算效率
通过本教程,开发者可以灵活扩展NotACracker/COTR项目的模型组件,满足各种3D检测任务的需求。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146