NotACracker/COTR项目模型自定义教程
2025-07-04 17:46:22作者:侯霆垣
模型组件概述
在NotACracker/COTR项目中,3D目标检测模型通常由6个核心组件构成,每个组件承担不同的功能:
- 编码器(Encoder):负责原始点云数据的初步处理,包括体素化(voxelization)和特征提取
- 骨干网络(Backbone):作为特征提取的主干网络,通常采用全卷积结构
- 颈部网络(Neck):连接骨干网络和检测头的中间模块,用于特征融合
- 检测头(Head):执行特定任务的模块,如边界框预测
- RoI提取器(RoI Extractor):从特征图中提取感兴趣区域特征
- 损失函数(Loss):计算预测结果与真实标签之间的差异
自定义编码器开发指南
1. 创建新的体素编码器
以HardVFE(硬体素特征编码器)为例,展示如何实现自定义编码器:
import torch.nn as nn
from ..builder import VOXEL_ENCODERS
@VOXEL_ENCODERS.register_module()
class HardVFE(nn.Module):
def __init__(self, arg1, arg2):
super().__init__()
# 初始化参数和层结构
self.conv1 = nn.Conv3d(...)
def forward(self, x):
# 实现前向传播逻辑
features = self.conv1(x)
return features
2. 模块注册与导入
有三种方式注册新模块:
- 直接导入:在
__init__.py中添加导入语句 - 动态导入:通过配置文件动态注册
- 混合导入:结合前两种方式
推荐使用动态导入方式,避免直接修改源码:
custom_imports = dict(
imports=['mmdet3d.models.voxel_encoders.HardVFE'],
allow_failed_imports=False)
3. 配置使用
在模型配置文件中指定新编码器:
model = dict(
voxel_encoder=dict(
type='HardVFE',
arg1=value1,
arg2=value2
)
)
自定义骨干网络实现
1. 实现SECOND骨干网络
SECOND网络是3D检测中常用的稀疏卷积网络:
from ..builder import BACKBONES
@BACKBONES.register_module()
class SECOND(BaseModule):
def __init__(self, in_channels, out_channels):
super().__init__()
# 构建稀疏卷积层
self.sparse_conv = SparseSequential(
SparseConv3d(in_channels, 64, 3),
SparseBatchNorm3d(64),
SparseReLU()
)
def forward(self, sparse_tensor):
# 处理稀疏体素数据
features = self.sparse_conv(sparse_tensor)
return features
2. 配置示例
backbone=dict(
type='SECOND',
in_channels=4,
out_channels=[64, 128, 256]
)
颈部网络开发实践
1. 实现SECONDFPN
特征金字塔网络(FPN)是多尺度特征融合的经典结构:
@NECKS.register_module()
class SECONDFPN(BaseModule):
def __init__(self, in_channels, out_channels):
super().__init__()
# 构建上采样和下采样路径
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
def forward(self, inputs):
# 实现特征融合逻辑
laterals = [lateral_conv(inputs[i])
for i, lateral_conv in enumerate(self.lateral_convs)]
# 上采样和特征融合
return tuple(fpn_convs)
2. 配置参考
neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
out_channels=256
)
高级:RoI Head开发
1. PartA2检测头实现
PartA2是两阶段检测器的典型代表:
@HEADS.register_module()
class PartA2BboxHead(BaseModule):
def __init__(self, num_classes, seg_in_channels):
super().__init__()
# 构建分割和部件预测分支
self.seg_conv = nn.Sequential(...)
self.part_conv = nn.Sequential(...)
def forward(self, seg_feats, part_feats):
# 融合分割和部件特征
fused_feats = torch.cat([seg_feats, part_feats], dim=1)
return cls_score, bbox_pred
2. RoI Head集成
@HEADS.register_module()
class PartAggregationROIHead(Base3DRoIHead):
def __init__(self, semantic_head, bbox_head):
super().__init__()
self.semantic_head = build_head(semantic_head)
self.bbox_head = build_head(bbox_head)
def _bbox_forward(self, seg_feats, part_feats, rois):
# RoI特征提取和预测
pooled_feats = self.roi_extractor(feats, rois)
return self.bbox_head(pooled_feats)
自定义损失函数
1. 实现MyLoss
@LOSSES.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean'):
super().__init__()
self.reduction = reduction
def forward(self, pred, target):
loss = (pred - target).abs()
return loss.mean() if self.reduction == 'mean' else loss.sum()
2. 配置使用
loss_bbox=dict(
type='MyLoss',
reduction='sum',
loss_weight=1.0
)
最佳实践建议
- 模块化设计:每个组件应保持功能单一性
- 继承现有基类:充分利用已有基础功能
- 配置驱动:尽量通过配置文件控制模块行为
- 测试验证:新模块应通过单元测试验证正确性
- 性能分析:使用profiler评估新模块的计算效率
通过本教程,开发者可以灵活扩展NotACracker/COTR项目的模型组件,满足各种3D检测任务的需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
469
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
716
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
208
83
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1