Docusaurus博客按月分组实现方案
背景介绍
Docusaurus作为一款流行的静态网站生成器,其博客功能默认支持按年份分组文章。但在实际应用中,很多开发者希望实现更细粒度的文章分组方式,比如按月分组。本文将详细介绍如何在Docusaurus中实现博客文章按月分组的功能。
默认分组机制分析
Docusaurus的博客插件默认提供按年份分组的机制,这通过groupByYear配置项控制。在主题配置中,可以通过设置blog.sidebar.groupByYear为true来启用年份分组功能。这种分组方式对于文章数量较少的情况已经足够,但当博客文章数量较多时,按月分组能提供更好的内容组织和浏览体验。
实现按月分组的技术方案
要实现按月分组,我们需要对Docusaurus的博客侧边栏组件进行定制。以下是具体实现步骤:
-
组件替换:首先使用Docusaurus提供的swizzle命令替换默认的博客侧边栏组件
npx docusaurus swizzle @docusaurus/theme-classic BlogSidebar --eject -
安装依赖:添加日期处理库date-fns
npm install date-fns -
自定义分组逻辑:在替换后的组件中,移除原有的年份分组函数,实现新的按月分组逻辑:
import { format } from 'date-fns'; function groupBlogSidebarItemsByMonth(items) { const map = new Map(); items.forEach((item) => { const date = new Date(item.date); const monthYear = format(date, 'MMMM yyyy'); if (!map.has(monthYear)) { map.set(monthYear, []); } map.get(monthYear).push(item); }); return Array.from(map.entries()); } -
组件渲染调整:修改组件渲染逻辑,使用新的按月分组函数:
if (themeConfig.blog.sidebar.groupByYear) { const itemsByMonth = groupBlogSidebarItemsByMonth(items); return ( <> {itemsByMonth.map(([month, monthItems]) => ( <BlogSidebarYearGroup key={month} year={month} yearGroupHeadingClassName={yearGroupHeadingClassName}> <ListComponent items={monthItems} /> </BlogSidebarYearGroup> ))} </> ); }
实现原理详解
-
日期处理:使用date-fns库的format函数将日期格式化为"月份 年份"的形式,如"2024年11月"。
-
分组映射:通过Map数据结构建立月份到文章列表的映射关系,确保同月份的文章被归入同一组。
-
组件复用:虽然实现了按月分组,但仍然复用了原有的BlogSidebarYearGroup组件来渲染每个月份的分组,保持了UI风格的一致性。
-
条件渲染:保留了原有的
groupByYear配置检查,确保修改不会影响其他功能。
注意事项
-
性能考虑:对于大型博客,按月分组可能会产生较多分组项,建议评估是否需要分页或其他优化措施。
-
本地化支持:date-fns库支持多语言,如需显示中文月份名称,需要额外配置本地化设置。
-
排序问题:确保分组后的月份按时间倒序排列,可以在分组后对结果进行排序处理。
-
向后兼容:修改后的组件应保持与原有配置的兼容性,不影响不使用按月分组的场景。
扩展思考
这种组件定制方法不仅适用于按月分组,还可以扩展到其他分组维度,如按标签、按作者等。Docusaurus的swizzle机制为这类定制提供了便利,开发者可以根据实际需求灵活调整。
通过本文介绍的方法,开发者可以轻松实现Docusaurus博客的按月分组功能,提升博客内容的组织性和用户体验。这种定制方式展示了Docusaurus框架的良好扩展性,能够满足各种不同的内容展示需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00