在Windows x64平台上构建jemalloc的ARM64版本
背景介绍
jemalloc是一个高性能的内存分配器,广泛应用于各种系统和应用中。在跨平台开发时,我们经常需要在x64架构的开发机上构建其他架构的版本,比如ARM64。本文将详细介绍如何在Windows x64平台上使用Visual Studio 2022构建jemalloc的ARM64版本。
常见构建问题
在Windows x64平台上构建ARM64版本的jemalloc时,开发者可能会遇到以下错误:
jemalloc-5.3.0\msvc\..\include\jemalloc/internal/spin.h(13,2): error : call to undeclared function '_mm_pause'
这个错误表明编译器无法识别_mm_pause指令,这是因为它是一个x86架构特有的指令,在ARM64架构上不可用。
解决方案
要成功构建ARM64版本的jemalloc,需要正确配置构建环境。以下是经过验证的有效方法:
- 使用正确的host参数配置autogen.sh脚本:
sh -c "CC=cl ./autogen.sh --host=arm64-pc-cygwin"
这个命令的关键在于--host=arm64-pc-cygwin参数,它明确告诉构建系统我们正在为ARM64架构构建。
技术原理
-
交叉编译:在x64平台上构建ARM64版本属于交叉编译,需要正确设置目标平台参数。
-
架构差异:x86架构的
_mm_pause指令在ARM64上不存在,jemalloc会根据目标平台自动选择适当的实现。 -
构建系统配置:
--host参数是GNU构建系统中的关键参数,它指定了代码将在什么平台上运行。
最佳实践
-
确保你的Visual Studio 2022安装了ARM64工具链。
-
在构建前清理之前的构建产物,避免缓存影响。
-
对于复杂的项目,建议先构建一个简单的测试程序验证交叉编译环境是否配置正确。
-
如果遇到其他架构相关错误,检查jemalloc是否有针对特定架构的条件编译代码。
总结
在Windows x64平台上构建jemalloc的ARM64版本需要注意正确配置交叉编译参数。通过指定--host=arm64-pc-cygwin参数,可以确保构建系统生成适合ARM64架构的代码。这种方法不仅适用于jemalloc,对于其他需要交叉编译的开源项目也有参考价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00