使用Pulumi Azure部署NGINX容器到Azure容器实例(ACI)
2025-06-06 15:12:16作者:廉彬冶Miranda
前言
在现代云原生应用开发中,容器化技术已成为不可或缺的一部分。Azure容器实例(ACI)提供了一种简单快速的方式来运行容器,而无需管理底层基础设施。本文将介绍如何使用Pulumi Azure工具包,通过基础设施即代码(IaC)的方式,在ACI中部署一个NGINX web服务器容器。
准备工作
在开始之前,请确保完成以下准备工作:
- 安装Pulumi CLI工具
- 配置Azure认证凭据
- 确保已安装Node.js环境
项目初始化
首先创建一个新项目目录并初始化Pulumi项目:
mkdir webserver && cd webserver
pulumi new azure-javascript
这将创建一个基于JavaScript的Pulumi Azure项目模板。
编写基础设施代码
打开自动生成的index.js文件,替换为以下内容:
const pulumi = require("@pulumi/pulumi");
const azure = require("@pulumi/azure");
// 创建资源组
let resourceGroup = new azure.core.ResourceGroup("webserver", {
location: "West US 2",
});
// 创建容器实例组
let container = new azure.containerservice.Group("nginx", {
containers: [{
name: "nginx",
image: "nginx", // 使用官方NGINX镜像
memory: 1, // 分配1GB内存
cpu: 1, // 分配1个vCPU
ports: [{
port: 80, // 暴露80端口
protocol: "TCP"
}],
}],
osType: "Linux", // 指定操作系统类型
resourceGroupName: resourceGroup.name,
location: resourceGroup.location,
});
// 导出公共IP地址
exports.publicIP = container.ipAddress;
这段代码主要完成以下工作:
- 创建一个Azure资源组,作为容器实例的容器
- 定义一个容器实例组,运行NGINX镜像
- 配置容器资源规格(CPU、内存)
- 暴露80端口用于HTTP访问
- 导出容器实例的公共IP地址
部署基础设施
执行以下命令预览并部署基础设施:
pulumi up
命令执行后会显示将要创建的资源预览,确认无误后选择"yes"开始部署。部署完成后,你将看到类似如下的输出:
Outputs:
publicIP: "13.66.202.166"
这表示NGINX容器已成功部署,并获得了公共IP地址。
验证部署
可以通过以下命令验证NGINX服务是否正常运行:
curl $(pulumi stack output publicIP)
如果看到NGINX的欢迎页面HTML内容,说明部署成功。
配置参数详解
在容器实例配置中,有几个关键参数值得注意:
image: 指定要运行的容器镜像,这里使用官方NGINX镜像memory和cpu: 定义容器资源配额ports: 配置容器暴露的端口osType: 必须与容器镜像的操作系统类型匹配
资源清理
完成测试后,可以通过以下命令清理资源:
pulumi destroy
这将删除所有已创建的资源。如果要完全删除项目栈,可以运行:
pulumi stack rm
进阶建议
- 自定义镜像: 可以构建自己的Docker镜像并推送到Azure容器注册表,然后在此处引用
- 环境变量: 通过
environmentVariables参数向容器传递配置 - 持久化存储: 添加
volumes配置实现数据持久化 - 多容器组: 在同一个组中部署多个关联容器
总结
通过本文,我们学习了如何使用Pulumi Azure在Azure容器实例中部署NGINX web服务器。Pulumi提供了一种声明式的方式来定义和部署云基础设施,使基础设施管理更加高效可靠。这种方法的优势在于:
- 使用熟悉的编程语言定义基础设施
- 支持版本控制和代码复用
- 提供预览和变更管理功能
- 简化多云环境管理
对于需要快速部署简单容器化应用且不想管理Kubernetes等复杂编排系统的场景,Azure容器实例配合Pulumi是一个理想的解决方案。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25