使用Pulumi Azure部署NGINX容器到Azure容器实例(ACI)
2025-06-06 11:30:06作者:廉彬冶Miranda
前言
在现代云原生应用开发中,容器化技术已成为不可或缺的一部分。Azure容器实例(ACI)提供了一种简单快速的方式来运行容器,而无需管理底层基础设施。本文将介绍如何使用Pulumi Azure工具包,通过基础设施即代码(IaC)的方式,在ACI中部署一个NGINX web服务器容器。
准备工作
在开始之前,请确保完成以下准备工作:
- 安装Pulumi CLI工具
- 配置Azure认证凭据
- 确保已安装Node.js环境
项目初始化
首先创建一个新项目目录并初始化Pulumi项目:
mkdir webserver && cd webserver
pulumi new azure-javascript
这将创建一个基于JavaScript的Pulumi Azure项目模板。
编写基础设施代码
打开自动生成的index.js文件,替换为以下内容:
const pulumi = require("@pulumi/pulumi");
const azure = require("@pulumi/azure");
// 创建资源组
let resourceGroup = new azure.core.ResourceGroup("webserver", {
location: "West US 2",
});
// 创建容器实例组
let container = new azure.containerservice.Group("nginx", {
containers: [{
name: "nginx",
image: "nginx", // 使用官方NGINX镜像
memory: 1, // 分配1GB内存
cpu: 1, // 分配1个vCPU
ports: [{
port: 80, // 暴露80端口
protocol: "TCP"
}],
}],
osType: "Linux", // 指定操作系统类型
resourceGroupName: resourceGroup.name,
location: resourceGroup.location,
});
// 导出公共IP地址
exports.publicIP = container.ipAddress;
这段代码主要完成以下工作:
- 创建一个Azure资源组,作为容器实例的容器
- 定义一个容器实例组,运行NGINX镜像
- 配置容器资源规格(CPU、内存)
- 暴露80端口用于HTTP访问
- 导出容器实例的公共IP地址
部署基础设施
执行以下命令预览并部署基础设施:
pulumi up
命令执行后会显示将要创建的资源预览,确认无误后选择"yes"开始部署。部署完成后,你将看到类似如下的输出:
Outputs:
publicIP: "13.66.202.166"
这表示NGINX容器已成功部署,并获得了公共IP地址。
验证部署
可以通过以下命令验证NGINX服务是否正常运行:
curl $(pulumi stack output publicIP)
如果看到NGINX的欢迎页面HTML内容,说明部署成功。
配置参数详解
在容器实例配置中,有几个关键参数值得注意:
image: 指定要运行的容器镜像,这里使用官方NGINX镜像memory和cpu: 定义容器资源配额ports: 配置容器暴露的端口osType: 必须与容器镜像的操作系统类型匹配
资源清理
完成测试后,可以通过以下命令清理资源:
pulumi destroy
这将删除所有已创建的资源。如果要完全删除项目栈,可以运行:
pulumi stack rm
进阶建议
- 自定义镜像: 可以构建自己的Docker镜像并推送到Azure容器注册表,然后在此处引用
- 环境变量: 通过
environmentVariables参数向容器传递配置 - 持久化存储: 添加
volumes配置实现数据持久化 - 多容器组: 在同一个组中部署多个关联容器
总结
通过本文,我们学习了如何使用Pulumi Azure在Azure容器实例中部署NGINX web服务器。Pulumi提供了一种声明式的方式来定义和部署云基础设施,使基础设施管理更加高效可靠。这种方法的优势在于:
- 使用熟悉的编程语言定义基础设施
- 支持版本控制和代码复用
- 提供预览和变更管理功能
- 简化多云环境管理
对于需要快速部署简单容器化应用且不想管理Kubernetes等复杂编排系统的场景,Azure容器实例配合Pulumi是一个理想的解决方案。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878