Grafana Helm Charts中Tempo分布式部署的滚动更新问题分析
问题背景
在使用Grafana Helm Charts部署Tempo分布式系统时,当部署副本数(Replicas)等于工作节点数量时,系统可能会遇到滚动更新卡住的问题。这是由于Kubernetes的Pod反亲和性(Anti-Affinity)规则与默认的滚动更新策略共同作用导致的。
技术原理分析
反亲和性规则的影响
Tempo分布式系统的部署配置中通常包含Pod反亲和性规则,这确保了同一服务的多个Pod不会被调度到同一个工作节点上。这种设计提高了系统的可用性,防止单点故障影响整个服务。
滚动更新策略的交互
默认的滚动更新策略与反亲和性规则在某些情况下会产生冲突:
- 当部署副本数等于工作节点数时
- 系统尝试进行滚动更新时
- 由于反亲和性规则,新Pod无法被调度到已有旧Pod的节点上
- 同时由于滚动更新策略的限制,系统无法创建额外的Pod
具体问题表现
在Tempo分布式系统的不同组件中,这个问题表现有所不同:
-
Tempo-distributor组件:使用默认的Kubernetes滚动更新策略
strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 25% maxSurge: 25% -
Tempo-querier组件:使用了更保守的更新策略
strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 1 maxSurge: 0
当节点数与副本数相等时,第一种策略可能导致更新完全无法进行,因为系统既不能终止旧Pod(受maxUnavailable限制),也不能创建新Pod(受反亲和性规则限制)。
解决方案探讨
针对这个问题,社区提出了两种解决方案:
方案一:采用保守更新策略
借鉴Tempo-querier的做法,使用更保守的更新策略:
- 设置maxSurge为0,确保不会创建超出副本数的Pod
- 设置maxUnavailable为1,确保每次只更新一个Pod
这种方案的优点是简单直接,但更新速度较慢。
方案二:提供策略配置选项
在Helm Chart的values.yaml中增加策略配置选项,允许用户根据实际环境灵活选择:
- 保留默认策略作为基础配置
- 提供覆盖选项让用户自定义maxUnavailable和maxSurge值
- 针对不同组件可以设置不同的策略
这种方案提供了更大的灵活性,但需要更复杂的配置管理。
最佳实践建议
-
生产环境推荐:对于生产环境,建议采用方案一的保守策略,确保更新过程的稳定性。
-
开发测试环境:可以使用方案二,根据实际节点资源情况灵活调整策略参数。
-
节点规划:长期来看,建议确保工作节点数至少比最大副本数多1,为滚动更新预留空间。
-
监控与告警:设置适当的监控,确保能及时发现并处理更新卡住的情况。
实现示例
如果采用方案二,values.yaml中可添加如下配置:
deploymentStrategy:
distributor:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 0
querier:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 0
然后在模板中使用这些值来配置各个组件的更新策略。
总结
Tempo分布式系统在Kubernetes上的部署更新问题展示了基础设施配置中各种约束条件的复杂交互。理解这些交互关系对于设计可靠的部署策略至关重要。通过合理配置滚动更新参数和节点资源规划,可以确保系统更新的顺利进行,同时保持服务的高可用性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00