Grafana Helm Charts中Tempo分布式部署的滚动更新问题分析
问题背景
在使用Grafana Helm Charts部署Tempo分布式系统时,当部署副本数(Replicas)等于工作节点数量时,系统可能会遇到滚动更新卡住的问题。这是由于Kubernetes的Pod反亲和性(Anti-Affinity)规则与默认的滚动更新策略共同作用导致的。
技术原理分析
反亲和性规则的影响
Tempo分布式系统的部署配置中通常包含Pod反亲和性规则,这确保了同一服务的多个Pod不会被调度到同一个工作节点上。这种设计提高了系统的可用性,防止单点故障影响整个服务。
滚动更新策略的交互
默认的滚动更新策略与反亲和性规则在某些情况下会产生冲突:
- 当部署副本数等于工作节点数时
- 系统尝试进行滚动更新时
- 由于反亲和性规则,新Pod无法被调度到已有旧Pod的节点上
- 同时由于滚动更新策略的限制,系统无法创建额外的Pod
具体问题表现
在Tempo分布式系统的不同组件中,这个问题表现有所不同:
-
Tempo-distributor组件:使用默认的Kubernetes滚动更新策略
strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 25% maxSurge: 25% -
Tempo-querier组件:使用了更保守的更新策略
strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 1 maxSurge: 0
当节点数与副本数相等时,第一种策略可能导致更新完全无法进行,因为系统既不能终止旧Pod(受maxUnavailable限制),也不能创建新Pod(受反亲和性规则限制)。
解决方案探讨
针对这个问题,社区提出了两种解决方案:
方案一:采用保守更新策略
借鉴Tempo-querier的做法,使用更保守的更新策略:
- 设置maxSurge为0,确保不会创建超出副本数的Pod
- 设置maxUnavailable为1,确保每次只更新一个Pod
这种方案的优点是简单直接,但更新速度较慢。
方案二:提供策略配置选项
在Helm Chart的values.yaml中增加策略配置选项,允许用户根据实际环境灵活选择:
- 保留默认策略作为基础配置
- 提供覆盖选项让用户自定义maxUnavailable和maxSurge值
- 针对不同组件可以设置不同的策略
这种方案提供了更大的灵活性,但需要更复杂的配置管理。
最佳实践建议
-
生产环境推荐:对于生产环境,建议采用方案一的保守策略,确保更新过程的稳定性。
-
开发测试环境:可以使用方案二,根据实际节点资源情况灵活调整策略参数。
-
节点规划:长期来看,建议确保工作节点数至少比最大副本数多1,为滚动更新预留空间。
-
监控与告警:设置适当的监控,确保能及时发现并处理更新卡住的情况。
实现示例
如果采用方案二,values.yaml中可添加如下配置:
deploymentStrategy:
distributor:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 0
querier:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 0
然后在模板中使用这些值来配置各个组件的更新策略。
总结
Tempo分布式系统在Kubernetes上的部署更新问题展示了基础设施配置中各种约束条件的复杂交互。理解这些交互关系对于设计可靠的部署策略至关重要。通过合理配置滚动更新参数和节点资源规划,可以确保系统更新的顺利进行,同时保持服务的高可用性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00