SecretFlow隐私求交(PSI)功能深度解析与应用指南
隐私求交(PSI)概述
隐私求交(Private Set Intersection, PSI)是多方安全计算(MPC)中的一项核心技术,它允许两个或多个参与方在不泄露各自原始数据集的情况下,计算它们的交集。SecretFlow作为一款隐私计算框架,提供了强大的PSI功能实现。
SecretFlow中的PSI连接类型
SecretFlow支持四种主要的PSI连接类型,每种类型对应不同的业务场景需求:
1. 内连接(inner_join)
内连接是最基础的PSI操作,它仅返回双方数据集的交集部分。具体表现为:
- Alice方仅获取自身数据集中与Bob方匹配的记录
- Bob方仅获取自身数据集中与Alice方匹配的记录
- 双方都无法获知对方非交集部分的信息
适用场景:当业务只需要知道双方共同拥有的数据时使用,例如联合风控中确认双方共有的黑名单用户。
2. 左连接(left_join)
左连接在PSI中具有特殊含义,它返回:
- 左方(发起方)获取自身数据集中与右方匹配的记录,以及自身非匹配记录的数量
- 右方仅获取自身数据集中与左方匹配的记录
关键点:右方无法获取左方非匹配记录的具体内容,仅左方知道自身非匹配记录的数量。
适用场景:当一方需要了解自身数据在对方数据中的覆盖情况时使用,例如广告主想知道自己的用户中有多少是某平台的用户。
3. 全连接(full_join)
全连接提供最全面的信息:
- 各方不仅获取自身数据集中与对方匹配的记录
- 还能获知对方数据集中所有记录的数量(但不包含具体内容)
- 通过填充方式保持数据对齐
技术实现:ECDH算法分别计算两次,确保双方都能获得完整的信息视图。
适用场景:需要全面了解双方数据匹配情况的场景,如数据质量评估、数据覆盖率分析等。
4. 差集连接(difference)
差集连接专注于非交集部分:
- 各方获取自身数据集中不与对方匹配的记录
- 同时获知对方数据集中非匹配记录的数量
- 不泄露具体非匹配记录的内容
适用场景:识别独特数据时使用,例如金融机构想找出自己独有的高风险客户。
PSI在SecretFlow中的技术实现
SecretFlow的PSI实现基于ECDH(椭圆曲线Diffie-Hellman)算法,这是一种非对称加密技术,具有以下特点:
-
双向计算:与传统PSI不同,SecretFlow会在双方节点分别执行求交计算,确保双方都能获得结果。
-
数据对齐:对于full_join和left_join等操作,系统会通过填充方式保持数据行对齐,确保后续计算的一致性。
-
隐私保护:在整个过程中,各方只能获取约定的信息(如交集或数量统计),无法推断出对方的原始数据。
业务场景选择指南
连接类型 | 适用业务场景 |
---|---|
inner_join | 需要精确知道双方共同数据的场景,如联合建模的特征对齐 |
left_join | 一方需要评估自身数据在另一方中的覆盖情况,如渠道质量评估 |
full_join | 需要全面了解双方数据关系的场景,如数据资产盘点或数据质量评估 |
difference | 识别独特数据的场景,如发现独家客户或特殊风险群体 |
实际应用建议
-
性能考量:full_join由于需要计算和传输更多信息,通常比inner_join消耗更多资源。
-
隐私权衡:left_join和full_join会泄露部分数量信息,在极高隐私要求场景下应谨慎使用。
-
结果验证:可以通过比较交集数量与各自数据集大小,验证PSI结果的合理性。
-
后续处理:PSI结果通常作为数据预处理步骤,为后续的联合建模或分析提供对齐后的数据。
通过深入理解SecretFlow提供的各种PSI连接类型,用户可以根据具体业务需求选择最合适的隐私求交方式,在保护数据隐私的同时实现有效的多方数据协作。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









