SecretFlow隐私求交(PSI)功能深度解析与应用指南
隐私求交(PSI)概述
隐私求交(Private Set Intersection, PSI)是多方安全计算(MPC)中的一项核心技术,它允许两个或多个参与方在不泄露各自原始数据集的情况下,计算它们的交集。SecretFlow作为一款隐私计算框架,提供了强大的PSI功能实现。
SecretFlow中的PSI连接类型
SecretFlow支持四种主要的PSI连接类型,每种类型对应不同的业务场景需求:
1. 内连接(inner_join)
内连接是最基础的PSI操作,它仅返回双方数据集的交集部分。具体表现为:
- Alice方仅获取自身数据集中与Bob方匹配的记录
- Bob方仅获取自身数据集中与Alice方匹配的记录
- 双方都无法获知对方非交集部分的信息
适用场景:当业务只需要知道双方共同拥有的数据时使用,例如联合风控中确认双方共有的黑名单用户。
2. 左连接(left_join)
左连接在PSI中具有特殊含义,它返回:
- 左方(发起方)获取自身数据集中与右方匹配的记录,以及自身非匹配记录的数量
- 右方仅获取自身数据集中与左方匹配的记录
关键点:右方无法获取左方非匹配记录的具体内容,仅左方知道自身非匹配记录的数量。
适用场景:当一方需要了解自身数据在对方数据中的覆盖情况时使用,例如广告主想知道自己的用户中有多少是某平台的用户。
3. 全连接(full_join)
全连接提供最全面的信息:
- 各方不仅获取自身数据集中与对方匹配的记录
- 还能获知对方数据集中所有记录的数量(但不包含具体内容)
- 通过填充方式保持数据对齐
技术实现:ECDH算法分别计算两次,确保双方都能获得完整的信息视图。
适用场景:需要全面了解双方数据匹配情况的场景,如数据质量评估、数据覆盖率分析等。
4. 差集连接(difference)
差集连接专注于非交集部分:
- 各方获取自身数据集中不与对方匹配的记录
- 同时获知对方数据集中非匹配记录的数量
- 不泄露具体非匹配记录的内容
适用场景:识别独特数据时使用,例如金融机构想找出自己独有的高风险客户。
PSI在SecretFlow中的技术实现
SecretFlow的PSI实现基于ECDH(椭圆曲线Diffie-Hellman)算法,这是一种非对称加密技术,具有以下特点:
-
双向计算:与传统PSI不同,SecretFlow会在双方节点分别执行求交计算,确保双方都能获得结果。
-
数据对齐:对于full_join和left_join等操作,系统会通过填充方式保持数据行对齐,确保后续计算的一致性。
-
隐私保护:在整个过程中,各方只能获取约定的信息(如交集或数量统计),无法推断出对方的原始数据。
业务场景选择指南
| 连接类型 | 适用业务场景 |
|---|---|
| inner_join | 需要精确知道双方共同数据的场景,如联合建模的特征对齐 |
| left_join | 一方需要评估自身数据在另一方中的覆盖情况,如渠道质量评估 |
| full_join | 需要全面了解双方数据关系的场景,如数据资产盘点或数据质量评估 |
| difference | 识别独特数据的场景,如发现独家客户或特殊风险群体 |
实际应用建议
-
性能考量:full_join由于需要计算和传输更多信息,通常比inner_join消耗更多资源。
-
隐私权衡:left_join和full_join会泄露部分数量信息,在极高隐私要求场景下应谨慎使用。
-
结果验证:可以通过比较交集数量与各自数据集大小,验证PSI结果的合理性。
-
后续处理:PSI结果通常作为数据预处理步骤,为后续的联合建模或分析提供对齐后的数据。
通过深入理解SecretFlow提供的各种PSI连接类型,用户可以根据具体业务需求选择最合适的隐私求交方式,在保护数据隐私的同时实现有效的多方数据协作。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00