使用ML.NET实现智能搜索框的文本类型预测功能
2025-05-25 11:21:17作者:齐添朝
引言
在现代应用程序开发中,智能搜索功能变得越来越重要。传统的搜索框需要用户明确指定搜索字段,而智能搜索则能自动识别用户输入的文本类型,并针对性地进行数据库查询。本文将介绍如何利用ML.NET框架实现这一功能,通过机器学习模型自动预测用户输入的文本属于数据库中的哪个字段。
技术背景
ML.NET是微软推出的开源机器学习框架,专为.NET开发者设计。它允许开发者在不具备深厚机器学习知识的情况下,将机器学习功能集成到应用程序中。本文案例展示了如何使用ML.NET的多类分类功能来实现文本类型预测。
实现方案
数据准备
首先需要准备训练数据,从数据库中提取各个字段的值并标记其类型:
var Foos = _FooDbContext.FooSet.AsEnumerable();
var cats = Foos.Select(x => new FooModelInput(x.ProductCategory, FooFieldType.ProductCategory));
var ents = Foos.Select(x => new FooModelInput(x.Enterprise, FooFieldType.EnterpriseName));
var names = Foos.Select(x => new FooModelInput(x.ProductName, FooFieldType.ProductName));
var models = Foos.SelectMany(x => x.Models).Select(x => new FooModelInput(x, FooFieldType.Model));
var certs = Foos.Select(x => new FooModelInput(x.CertificateNumber, FooFieldType.CertificateNo));
var rpts = Foos.SelectMany(x => x.ReportNumbers).Select(x => new FooModelInput(x, FooFieldType.ReportNo));
数据模型定义
定义输入数据模型和预测结果模型:
public class FooModelInput
{
[ColumnName("Label")]
public int FooFieldType { get; set; }
public string Field { get; set; }
public FooModelInput(string field, FooFieldType FooFieldType)
{
Field = field;
FooFieldType = (int)FooFieldType;
}
}
public class FooFieldTypePrediction
{
public FooFieldType FooFieldType => (FooFieldType)Prediction;
[ColumnName("PredictedLabel")]
public int Prediction { get; set; }
}
机器学习管道构建
构建机器学习处理管道:
private EstimatorChain<ITransformer> ProcessData()
{
var pipeline = _mlContext.Transforms.Conversion
.MapValueToKey(inputColumnName: nameof(FooModelInput.FooFieldType), outputColumnName: "Label")
.Append(_mlContext.Transforms.Text.FeaturizeText(inputColumnName: nameof(FooModelInput.Field), outputColumnName: "Feature"))
.AppendCacheCheckpoint(_mlContext);
return pipeline;
}
模型训练
使用SDCA最大熵算法训练多类分类模型:
private TransformerChain<KeyToValueMappingTransformer> BuildAndTrainModel(IDataView splitTrainSet, IEstimator<ITransformer> pipeline)
{
var trainingPipeline = pipeline
.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy("Label", "Feature"))
.Append(_mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
var trainedModel = trainingPipeline.Fit(splitTrainSet);
return trainedModel;
}
模型评估
训练完成后评估模型性能:
public void Evaluate()
{
var testMetrics = _mlContext.MulticlassClassification.Evaluate(_trainedModel?.Transform(_trainTestData.TestSet));
Debug.WriteLine($"* MicroAccuracy: {testMetrics.MicroAccuracy:0.###}");
Debug.WriteLine($"* MacroAccuracy: {testMetrics.MacroAccuracy:0.###}");
Debug.WriteLine($"* LogLoss: {testMetrics.LogLoss:#.###}");
}
预测实现
最后实现预测功能:
public FooFieldTypePrediction Predict(string field)
{
LoadModel();
var example = new FooModelInput(field);
var predEngine = _mlContext.Model.CreatePredictionEngine<FooModelInput, FooFieldTypePrediction>(_trainedModel);
var prediction = predEngine.Predict(example);
return prediction;
}
实际应用
在实际应用中,可以结合一些简单的规则判断来提高预测准确率:
public FooFieldType PredictFooFieldType(string field)
{
field = field.CleanText();
if (String.IsNullOrWhiteSpace(field))
{
return FooFieldType.SmartMode;
}
if (FooCertificateStatusFields.Descriptions.Value.Contains(field))
{
return FooFieldType.Status;
}
if (DateOnly.TryParse(field, out _))
{
return FooFieldType.CertDateStart;
}
var prediction = Predict(field);
return prediction.FooFieldType;
}
性能优化建议
- 数据预处理:对输入文本进行标准化处理,如统一大小写、去除特殊字符等
- 特征工程:可以尝试不同的文本特征提取方法,如n-gram、TF-IDF等
- 模型选择:除了SDCA最大熵算法,还可以尝试其他分类算法如LbfgsMaximumEntropy
- 增量训练:随着数据量增加,可以实现模型的增量训练功能
总结
本文介绍了如何使用ML.NET实现智能搜索框的文本类型预测功能。通过构建多类分类模型,系统能够自动识别用户输入的文本类型,并针对性地进行数据库查询。这种方法不仅提高了用户体验,也为开发者提供了一种将机器学习集成到应用程序中的实用范例。
对于想要进一步优化的开发者,可以考虑引入更复杂的特征工程方法,或者尝试不同的机器学习算法来提升预测准确率。同时,随着业务数据的变化,定期重新训练模型也是保持预测准确性的重要手段。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0132
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692