SDV项目中Inequality CAG模式的实现解析
背景介绍
在数据合成领域,保持数据间的约束关系是确保合成数据质量的关键。SDV(Synthetic Data Vault)作为一个强大的数据合成工具库,近期正在扩展其多表约束架构图(CAG)模式的支持范围。本文将深入分析SDV项目中新增的Inequality CAG模式的实现细节和技术考量。
Inequality CAG模式概述
Inequality CAG模式用于在合成数据中保持两列数据之间的不等式关系约束。该模式继承自SDV的基础CAG类,主要功能包括:
- 验证输入数据的合法性
- 转换数据以保持不等式关系
- 在反向转换时恢复原始数据格式
核心功能实现
初始化参数
Inequality CAG模式接受以下关键参数:
low_column_name
:不等式左侧的列名high_column_name
:不等式右侧的列名strict_boundaries
:是否使用严格不等式table_name
:可选参数,指定应用约束的表名
元数据验证
在_validate_pattern_with_metadata
方法中,实现了以下验证逻辑:
- 当未指定表名时,确保元数据只包含单个表
- 检查高低值列是否存在于目标表中
- 验证两列具有相同的数据类型(数值型或日期时间型)
数据验证
_validate_pattern_with_data
方法负责验证实际数据是否满足不等式要求,确保约束的合理性。
元数据更新
_get_updated_metadata
方法执行以下操作:
- 添加差异列(默认命名格式为
{low_column_name}#{high_column_name}
) - 从元数据中移除高值列
核心算法实现
拟合过程
_fit
方法沿用了原有约束的逻辑,主要计算数据的基本统计特征,为后续转换做准备。
有效性检查
_is_valid
方法验证给定数据是否满足不等式约束条件,这是保证合成数据质量的关键步骤。
数据转换
在_transform
方法中,实现了将原始数据转换为满足约束形式的逻辑,主要包括:
- 计算高低值列之间的差异
- 应用必要的数学变换
反向转换
_reverse_transform
方法负责将转换后的数据恢复为原始格式,确保合成数据与真实数据保持相同的统计特性。
技术考量与最佳实践
-
数据类型处理:该模式同时支持数值型和日期时间型数据,在实现时需要考虑不同类型数据的比较方式差异。
-
边界条件处理:
strict_boundaries
参数允许用户选择是否包含边界值,这在某些业务场景下非常重要。 -
元数据管理:自动更新元数据的功能确保了约束应用后系统状态的完整性。
-
命名约定:差异列的自动命名采用直观的格式,便于后续识别和处理。
应用场景
Inequality CAG模式适用于多种业务场景,例如:
- 确保订单发货日期不早于下单日期
- 保持产品价格区间下限不超过上限
- 验证金融交易中各种时间戳的先后顺序
总结
SDV项目中Inequality CAG模式的实现展示了如何将单表约束优雅地集成到多表约束架构中。通过继承基础CAG类并实现特定的验证和转换逻辑,该模式为合成数据中的不等式约束提供了可靠的支持。这种设计既保持了原有约束的核心功能,又为多表场景下的扩展提供了灵活性,是SDV约束系统演进的重要一步。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









