CppFormat库中高效拼接格式化参数的实现方法
2025-05-10 22:44:26作者:冯梦姬Eddie
在C++开发中,字符串格式化是一个常见需求,而CppFormat库(即fmt库)提供了强大的格式化功能。本文将探讨如何高效地实现多个参数的格式化拼接,这是许多开发者在使用fmt库时遇到的典型问题。
问题背景
开发者经常需要将多个参数格式化为字符串并拼接起来,类似于将每个参数通过std::to_string转换后拼接。使用fmt库时,我们希望保持其类型擦除和高效分发的优势,同时实现这种拼接功能。
初步解决方案
最直观的实现方式是使用可变参数模板和折叠表达式:
template <typename... Args>
std::string concat_formatted(Args const&... args) {
return (std::string{} + ... + fmt::format("{}", args));
}
但这种实现效率低下,因为它会:
- 为每个参数创建临时字符串
- 进行多次内存分配
- 产生不必要的字符串拷贝
改进方案
更高效的实现方式是使用fmt库的内部机制:
std::string vconcat_format(fmt::format_args args) {
auto buffer = fmt::memory_buffer();
auto out = fmt::appender(buffer);
auto i = 0;
for (auto arg = args.get(i); arg; ++i, arg = args.get(i)) {
arg.visit(fmt::detail::default_arg_formatter<char>{out});
}
return std::string{buffer.data(), buffer.size()};
}
template <typename... Args>
std::string concat_format(Args const&... args) {
return vconcat_format(fmt::make_format_args(args...));
}
这种方法直接操作格式化参数,避免了中间字符串的创建和拷贝,性能更高。
最优解决方案
经过讨论和优化,最终推荐的实现方式是:
template <typename Out, typename... Args>
Out concat_format_to(Out out, Args const&... args) {
((out = fmt::format_to(std::move(out), "{}", args)), ...);
return out;
}
template <typename... Args>
std::string concat_format(Args const&... args) {
auto buffer = fmt::memory_buffer();
concat_format_to(fmt::appender(buffer), args...);
return std::string{buffer.data(), buffer.size()};
}
这种实现:
- 使用
fmt::format_to直接写入内存缓冲区 - 避免了多次内存分配
- 保持了fmt库的类型擦除优势
- 生成的机器码更精简
性能优化技巧
对于追求极致性能的场景,可以使用fmt库的格式字符串编译功能。这可以避免运行时解析"{}"格式字符串的开销,因为编译器会在编译时完成解析工作。
总结
在C++中使用fmt库高效拼接格式化参数时,应避免创建中间字符串对象,而是直接操作内存缓冲区。通过fmt::format_to和内存缓冲区的组合,可以实现既高效又简洁的解决方案。对于性能关键路径,还可以利用格式字符串编译进一步优化。
这些技术不仅适用于简单的参数拼接,也可以扩展到更复杂的格式化场景,是每个C++开发者都应该掌握的核心技能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178