Gin-Vue-Admin项目中导出功能的软删除数据过滤实现
在现代Web应用开发中,数据导出功能是管理后台的常见需求。Gin-Vue-Admin作为一款基于Gin和Vue的企业级全栈开发框架,其导出功能在实际业务场景中扮演着重要角色。本文将深入探讨如何在该项目中实现导出功能对软删除数据的过滤支持。
软删除与数据导出的关系
软删除(Soft Delete)是一种常见的数据处理模式,它通过在数据表中添加deleted_at
字段来标记记录是否被删除,而不是真正从数据库中移除数据。这种设计有以下优势:
- 保留历史数据以便审计
- 支持数据恢复功能
- 避免外键约束问题
然而,在数据导出场景下,通常不希望包含已被软删除的记录,这会导致以下问题:
- 导出的数据与前端列表展示不一致
- 可能泄露敏感数据
- 影响数据分析的准确性
技术实现方案
前端实现
在Vue组件层面,我们通过以下方式增强导出功能:
-
新增过滤配置选项
在导出模板配置中添加filterDeleted
属性,默认值为true
,确保大多数情况下自动过滤已删除数据。 -
请求参数处理
在发起导出请求时,将过滤选项作为参数传递给后端:const paramsCopy = JSON.parse(JSON.stringify(props.condition)) if (props.filterDeleted) { paramsCopy.filterDeleted = 'true' }
-
用户界面展示
在导出配置界面添加直观的复选框控件,让管理员可以灵活选择是否包含已删除数据:<el-checkbox v-model="templateForm.filterDeleted">自动过滤已删除数据</el-checkbox>
后端实现
后端采用Gin框架,主要增强点包括:
-
数据库模型扩展
在SysExportTemplate
模型中新增FilterDeleted
字段,使用指针类型以区分零值和未设置情况:type SysExportTemplate struct { FilterDeleted *bool `json:"filterDeleted" gorm:"default:true"` }
-
智能过滤逻辑
导出服务中实现多层次的过滤控制:func (s *SysExportTemplateService) ExportExcel(...) { // 优先使用模板配置 filterDeleted := true if template.FilterDeleted != nil { filterDeleted = *template.FilterDeleted } // 允许请求参数覆盖 if values.Get("filterDeleted") == "false" { filterDeleted = false } // 应用过滤条件 if filterDeleted { db = db.Where(fmt.Sprintf("%s.deleted_at IS NULL", template.TableName)) } }
-
关联表处理
对于关联查询,自动检测关联表是否支持软删除:func (s *SysExportTemplateService) hasDeletedAtColumn(tableName string) bool { var count int64 global.GVA_DB.Raw("SELECT COUNT(*) FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = ? AND COLUMN_NAME = 'deleted_at'", tableName).Count(&count) return count > 0 }
设计考量与最佳实践
-
默认安全性
采用"安全默认值"原则,默认过滤已删除数据,避免意外数据泄露。 -
灵活性
提供多层次的配置覆盖能力:- 模板级默认配置
- 单次导出参数覆盖
- 关联表自动适应
-
性能优化
通过数据库元信息查询避免不必要的过滤条件,提升查询效率。 -
迁移兼容性
为现有系统提供平滑升级路径,通过迁移脚本为旧模板设置合理默认值。
实际应用建议
-
审计场景
当需要导出包含历史删除记录时,可通过临时参数filterDeleted=false
获取完整数据。 -
定期维护
建议定期检查导出模板配置,确保过滤设置符合当前业务需求。 -
权限控制
对于敏感数据,可在服务端强制启用过滤,忽略前端参数。
总结
Gin-Vue-Admin通过系统化的软删除过滤实现,为数据导出功能提供了更加专业和安全的解决方案。这种实现不仅考虑了技术实现的完整性,还充分兼顾了实际业务场景的多样性需求。开发者可以根据本文介绍的模式,在自己的项目中实现类似功能,或者基于此进行进一步的定制开发。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









