AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是AWS官方维护的一套深度学习容器镜像,为开发者提供了开箱即用的深度学习框架环境。这些预构建的容器镜像经过优化,可以无缝运行在AWS云服务上,特别是EC2实例。
本次发布的v1.19版本主要针对PyTorch 2.5.1推理场景,提供了CPU和GPU两种版本的容器镜像。这些镜像基于Ubuntu 22.04操作系统,预装了Python 3.11环境,为开发者提供了稳定且高性能的PyTorch推理环境。
镜像版本详情
CPU版本镜像
CPU版本镜像适用于没有GPU加速需求的推理场景,包含了PyTorch 2.5.1的CPU版本及其相关生态组件。主要特点包括:
- 基础环境:Ubuntu 22.04
- Python版本:3.11
- PyTorch核心组件版本:
- torch==2.5.1+cpu
- torchvision==0.20.1+cpu
- torchaudio==2.5.1+cpu
- 配套工具:
- torchserve==0.12.0
- torch-model-archiver==0.12.0
- 科学计算库:
- numpy==2.1.3
- scipy==1.14.1
- pandas==2.2.3
GPU版本镜像
GPU版本镜像针对需要CUDA加速的推理场景进行了优化,支持CUDA 12.4计算架构。主要特点包括:
- CUDA版本:12.4
- cuDNN版本:9(针对CUDA 12优化)
- PyTorch核心组件版本:
- torch==2.5.1+cu124
- torchvision==0.20.1+cu124
- torchaudio==2.5.1+cu124
- 额外包含MPI支持:mpi4py==4.0.1
技术栈亮点
-
Python 3.11支持:两个版本都基于Python 3.11构建,充分利用了最新Python版本在性能上的优化。
-
科学计算生态:预装了完整的科学计算工具链,包括NumPy 2.1.3、SciPy 1.14.1和Pandas 2.2.3等主流库。
-
计算机视觉支持:包含OpenCV 4.10.0和Pillow 11.0.0,为图像处理任务提供了强大支持。
-
模型服务工具:内置TorchServe 0.12.0和Torch Model Archiver,方便用户部署和管理PyTorch模型。
-
AWS工具集成:预装了boto3、awscli等AWS SDK工具,便于与AWS服务集成。
适用场景
这些镜像特别适合以下应用场景:
-
云端模型部署:在EC2实例上快速部署PyTorch推理服务。
-
批量推理任务:处理大规模离线推理任务,充分利用云计算的弹性资源。
-
模型服务开发:基于TorchServe开发自定义模型服务。
-
AI应用原型开发:快速搭建AI应用原型,验证模型效果。
使用建议
对于生产环境部署,建议:
-
根据计算需求选择合适版本:
- 计算密集型任务选择GPU版本
- I/O密集型或轻量级任务选择CPU版本
-
充分利用TorchServe的特性:
- 多模型管理
- 自动缩放
- 监控指标
-
考虑使用AWS Elastic Inference服务与CPU版本配合使用,实现性价比最优的推理方案。
这些经过AWS优化的容器镜像,不仅减少了环境配置的复杂性,还通过硬件层面的优化提供了更好的性能表现,是PyTorch用户在AWS云上部署推理服务的理想选择。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









