探索未来游戏AI:PatrolJS - 导航网格工具包
注意:此项目已废弃,请转至three-pathfinding
在游戏和三维应用中,让AI角色自如地在世界中导航是一项挑战。传统方式如使用路点导航存在诸多问题,而PatrolJS,一个基于ThreeJS的导航网格工具包,提供了更高效、准确且考虑了AI实体大小的解决方案。
项目简介
PatrolJS是一个用于ThreeJS的导航网格工具,它利用A*算法和Funnel算法来计算导航网格上的路径。通过这种方式,AI代理可以更自然地避开障碍物并进行复杂的动态移动。这个库不仅适用于客户端,也可以在服务器端使用,并依赖于ThreeJS和Underscore库。
演示与实例
你可以访问演示页面,体验PatrolJS的强大功能。此外,它还被应用于Ironbane MMO中,观看此处视频了解其实际效果。

安装与使用
要使用PatrolJS,首先你需要ThreeJS和Underscore库。在客户端,这两个库应全局可用。在服务器端,通过npm install patroljs安装后,使用require('patroljs')导入。
导航网格的构建需要通过Blender等工具完成,然后将数据转换为ThreeJS的JSON格式。PatrolJS仅接受原始JSON模型数据,加载文件需自行处理。
要加载导航网格,首先调用patrol.buildNodes(geometry)生成节点,接着使用patrol.setZoneData('level', zoneNodes)存储数据。当需要计算路径时,使用patrol.findPath()函数,传入起始位置、目标位置以及当前所在的导航网格组。
jsonLoader.load( 'meshes/level.nav.js', function( geometry, materials ) {
var zoneNodes = patrol.buildNodes(geometry);
patrol.setZoneData('level', zoneNodes);
// 设置玩家的导航网格组
playerNavMeshGroup = patrol.getGroup('level', player.position);
}, null);
// 计算路径
calculatedPath = patrol.findPath(player.position, target.position, 'level', playerNavMeshGroup);
应用场景与特点
PatrolJS主要用于游戏和三维应用程序,帮助开发者创建智能的AI角色,使它们能够在复杂环境中自由移动。特别适合大规模、开放世界的场景,例如沙盒式游戏或模拟环境。
该项目的主要特点是:
- 兼容性:与ThreeJS无缝集成,支持客户端和服务器端。
- 灵活性:允许自定义导航网格,适应不同游戏设计需求。
- 效率:采用A*和Funnel算法,提供快速且精确的路径规划。
- 易用性:简单的API设计,易于理解和实现路径规划功能。
感谢bgrin的A*库、Digesting Duck的简单愚蠢通道算法以及Recastnavigation的级别网格的贡献。
最后,PatrolJS遵循MIT许可,鼓励开发者参与和改进。
如果你正在寻找一种更好的方法来提升你的游戏AI导航性能,那么PatrolJS值得一看!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00