探索未来游戏AI:PatrolJS - 导航网格工具包
注意:此项目已废弃,请转至three-pathfinding
在游戏和三维应用中,让AI角色自如地在世界中导航是一项挑战。传统方式如使用路点导航存在诸多问题,而PatrolJS,一个基于ThreeJS的导航网格工具包,提供了更高效、准确且考虑了AI实体大小的解决方案。
项目简介
PatrolJS是一个用于ThreeJS的导航网格工具,它利用A*算法和Funnel算法来计算导航网格上的路径。通过这种方式,AI代理可以更自然地避开障碍物并进行复杂的动态移动。这个库不仅适用于客户端,也可以在服务器端使用,并依赖于ThreeJS和Underscore库。
演示与实例
你可以访问演示页面,体验PatrolJS的强大功能。此外,它还被应用于Ironbane MMO中,观看此处视频了解其实际效果。

安装与使用
要使用PatrolJS,首先你需要ThreeJS和Underscore库。在客户端,这两个库应全局可用。在服务器端,通过npm install patroljs安装后,使用require('patroljs')导入。
导航网格的构建需要通过Blender等工具完成,然后将数据转换为ThreeJS的JSON格式。PatrolJS仅接受原始JSON模型数据,加载文件需自行处理。
要加载导航网格,首先调用patrol.buildNodes(geometry)生成节点,接着使用patrol.setZoneData('level', zoneNodes)存储数据。当需要计算路径时,使用patrol.findPath()函数,传入起始位置、目标位置以及当前所在的导航网格组。
jsonLoader.load( 'meshes/level.nav.js', function( geometry, materials ) {
var zoneNodes = patrol.buildNodes(geometry);
patrol.setZoneData('level', zoneNodes);
// 设置玩家的导航网格组
playerNavMeshGroup = patrol.getGroup('level', player.position);
}, null);
// 计算路径
calculatedPath = patrol.findPath(player.position, target.position, 'level', playerNavMeshGroup);
应用场景与特点
PatrolJS主要用于游戏和三维应用程序,帮助开发者创建智能的AI角色,使它们能够在复杂环境中自由移动。特别适合大规模、开放世界的场景,例如沙盒式游戏或模拟环境。
该项目的主要特点是:
- 兼容性:与ThreeJS无缝集成,支持客户端和服务器端。
- 灵活性:允许自定义导航网格,适应不同游戏设计需求。
- 效率:采用A*和Funnel算法,提供快速且精确的路径规划。
- 易用性:简单的API设计,易于理解和实现路径规划功能。
感谢bgrin的A*库、Digesting Duck的简单愚蠢通道算法以及Recastnavigation的级别网格的贡献。
最后,PatrolJS遵循MIT许可,鼓励开发者参与和改进。
如果你正在寻找一种更好的方法来提升你的游戏AI导航性能,那么PatrolJS值得一看!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00