Simd项目v6.1.145版本发布:深度优化卷积算法与新增缩放功能
2025-06-20 00:22:58作者:劳婵绚Shirley
Simd是一个高性能图像处理和计算机视觉算法库,专注于利用SIMD(单指令多数据流)指令集实现算法加速。该库支持多种处理器架构,包括SSE4.1、AVX2、AVX-512BW以及最新的AMX-BF16等指令集,广泛应用于深度学习推理、图像处理等领域。
算法优化与新增功能
新增卷积算法支持
本次发布的v6.1.145版本在卷积算法方面进行了多项增强,特别是针对AMX-BF16指令集新增了多个深度卷积内核:
- 新增了5x5卷积核支持,包括DepthwiseConvolution_k5p2d1s1w6和DepthwiseConvolution_k5p2d1s1w4两种变体,分别针对不同宽度的数据处理进行了优化
- 新增了3x3卷积核支持,包括DepthwiseConvolution_k3p1d1s1w8和DepthwiseConvolution_k3p1d1s1w6两种实现
- 扩展了7x7卷积核的应用范围,使DepthwiseConvolution_k7p3d1s1w4、DepthwiseConvolution_k7p3d1s1w6和DepthwiseConvolution_k7p3d1s1w8能够处理更多场景
这些新增的内核显著提升了特定卷积配置下的计算效率,特别是在Intel Sapphire Rapids等支持AMX-BF16指令集的处理器上。
新增二维缩放功能
版本引入了全新的SynetTiledScale2D32f函数,提供了高效的二维浮点数据缩放能力:
- 实现了基础版本、SSE4.1、AVX2和AVX-512BW多级优化
- 采用分块处理策略,减少内存访问开销
- 特别适合深度学习模型中的特征图上采样和下采样操作
同时新增了ResizerBf16Bilinear类的基础实现和SSE4.1优化版本,为BF16数据格式提供了双线性插值缩放支持。
性能改进与问题修复
性能优化
- 改进了SynetConvolution32f在NHWC布局、单输入通道和单输出通道情况下的性能
- 扩展了AVX-512BW对Convolution32fNhwcDepthwise_k7p3d1s1w4函数的优化范围
- 提升了AMX-BF16在DepthwiseConvolutionDefault和DepthwiseConvolutionLargePad函数中的执行效率
问题修复
- 修正了AMX-BF16在SynetInnerProduct16bGemmNN类中的实现错误
- 修复了AVX-512BW在SynetAdd16bUniform类中的计算问题
- 解决了Base实现中SynetMergedConvolution16bCdc和SynetMergedConvolution16bCd类的逻辑错误
- 修正了InputMemoryStream类的实现问题
API变更与测试增强
API调整
- 在SimdSynetMergedConvolution16bInit函数中移除了兼容性参数
- 在SimdSynetMergedConvolution16bSetParams函数中移除了内部参数
- 为SimdSynetMergedConvolution16bInit函数添加了新参数
测试框架改进
新增了对SynetTiledScale2D32f功能的测试验证,确保缩放功能的正确性和稳定性。这些测试覆盖了不同数据规模、不同缩放比例以及各种边界条件,为功能的可靠性提供了保障。
技术意义与应用价值
本次更新特别强调了在AMX-BF16指令集上的优化,这对于使用Intel最新一代Xeon可扩展处理器(Sapphire Rapids)的用户尤为重要。AMX-BF16是Intel针对深度学习工作负载引入的矩阵运算扩展,能够显著加速BF16格式的矩阵乘法运算。
新增的二维缩放功能为计算机视觉和深度学习应用提供了更灵活的特征图处理能力,特别是在需要动态调整特征图尺寸的场景中,如目标检测、语义分割等任务。
卷积算法的持续优化反映了Simd项目对深度学习推理性能的重视,这些改进可以直接转化为模型推理速度的提升和能耗的降低,对于边缘计算和实时应用场景具有实际价值。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319