Brax项目中实现动态域随机化的技术探讨
2025-06-29 12:52:58作者:乔或婵
背景介绍
Brax是一个基于JAX的物理仿真引擎,广泛应用于强化学习研究。在强化学习训练过程中,域随机化(Domain Randomization)是一种重要的技术手段,它通过在训练过程中随机化仿真环境的物理参数,来提高策略在真实世界中的泛化能力。
现有实现的问题分析
Brax当前通过DomainRandomizationVmapWrapper
实现了域随机化功能,但存在两个主要限制:
- 随机化仅在环境初始化时执行一次,无法在每个episode重置时重新随机化参数
- 系统参数(System)作为全局变量存储,难以在函数式编程范式下进行灵活操作
这些问题限制了研究人员实现更动态的域随机化策略,例如:
- 每个episode使用不同的物理参数
- 在训练过程中逐步扩大随机化范围
- 实现基于课程学习的自适应随机化
技术解决方案探讨
方案一:将System参数纳入State
一种思路是将System参数作为环境状态(State)的一部分传递。具体实现方式包括:
- 将System存储在state.info字典中
- 重写环境代码,使用state.info['sys']替代self.sys
- 在reset和step函数中动态更新System参数
这种方法的优势是保持了函数式编程的纯函数特性,但可能会带来一定的性能开销,特别是当随机化大量参数时。
方案二:扩展reset函数的options参数
另一种思路是为reset函数添加options参数,允许在环境重置时传入随机化配置:
def reset(self, rng: jax.Array, *, options: dict | None = None) -> State:
if options:
sys = self.sys.replace(**options)
pipeline_state = self.pipeline_init(q, qd, sys=sys)
这种方法更加灵活,可以支持:
- 每次reset时动态调整参数
- 通过vmap批量处理不同参数配置
- 保持原有性能优化
实现示例
基于上述思路,可以构建一个更灵活的域随机化包装器:
class DynamicDomainRandomization(brax.envs.Wrapper):
def __init__(self, env, randomizer_fn):
super().__init__(env)
self.randomizer_fn = randomizer_fn
def reset(self, rng):
key_reset, key_random = jax.random.split(rng)
variations = self.randomizer_fn(self.env.sys, key_random)
new_sys = tree_replace(self.env.sys, variations)
env = self.env.unwrapped
env.sys = new_sys
state = env.reset(key_reset)
return state.replace(info={'variations': variations})
性能考量
在实际应用中需要注意:
- 大量参数的随机化会增加state.info的体积,可能影响性能
- 对于Humanoid等复杂环境,随机化几何体参数会显著增加计算量
- 可以通过选择性随机化(如仅改变关键参数)来平衡性能与泛化需求
实际应用建议
根据具体需求选择合适的实现方式:
- 对于简单的sim2sim转换,静态随机化(现有实现)通常足够
- 需要严格验证策略泛化性时,建议使用动态随机化
- 训练初期可以使用较小随机范围,逐步扩大(课程学习)
总结
Brax作为高性能物理仿真引擎,为强化学习研究提供了强大支持。通过合理设计域随机化策略,可以更好地平衡训练效率与策略泛化能力。本文探讨的两种实现方式各有优劣,研究人员可根据具体需求选择或组合使用。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0230PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。01- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
132
1.89 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
273

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
70
63

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
379
389

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.24 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
915
548

openGauss kernel ~ openGauss is an open source relational database management system
C++
144
189

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15