解决minimind项目中大语料训练Tokenizer时的内存问题
2025-05-10 01:47:28作者:裴锟轩Denise
在自然语言处理项目中,Tokenizer的训练是一个关键步骤。minimind项目在训练Tokenizer时遇到了内存分配失败的问题,特别是在处理7GB大小的parquet文件时。本文将深入分析问题原因并提供解决方案。
问题背景
当使用HuggingFace的tokenizers库训练BPE(Byte Pair Encoding)模型时,内存消耗会随着语料库大小的增加而显著增长。对于7GB的parquet文件,直接加载到内存中进行训练会导致内存不足错误。
核心问题分析
-
内存消耗来源:
- 原始语料一次性加载到内存
- BPE算法需要维护词频统计表
- 中间处理结果占用大量内存
-
现有实现的问题:
- 虽然使用了迭代器模式读取数据,但内存优化不足
- 缺乏批处理机制
- 没有考虑数据预处理的内存占用
解决方案
1. 优化数据加载方式
def _get_training_corpus(self) -> Iterator[str]:
logger.info(f"Reading training corpus from {self.data_path}")
try:
# 使用PyArrow直接流式读取parquet文件
import pyarrow.parquet as pq
table = pq.ParquetFile(self.data_path)
# 分批读取数据
batch_size = 10000 # 可根据内存调整
for batch in table.iter_batches(batch_size=batch_size):
df = batch.to_pandas()
for text in df['text']:
if pd.notna(text):
yield str(text)
else:
logger.warning("遇到空文本,已跳过")
except Exception as e:
logger.error(f"读取parquet文件失败: {e}")
raise
2. 调整训练参数
trainer = trainers.BpeTrainer(
vocab_size=self.vocab_size,
special_tokens=self.special_tokens,
show_progress=True,
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
continuing_subword_prefix="", # 减少内存占用
end_of_word_suffix="", # 减少内存占用
limit_alphabet=1000, # 限制初始字母表大小
)
3. 实现内存监控
import psutil
import os
def memory_check():
process = psutil.Process(os.getpid())
mem_info = process.memory_info()
return mem_info.rss / (1024 * 1024) # MB
# 在训练循环中添加内存检查
logger.info(f"当前内存使用: {memory_check()}MB")
进阶优化建议
-
预处理数据:
- 在训练前对语料进行清洗和简化
- 移除罕见字符和多余空格
-
分布式训练:
- 对于超大语料库,考虑使用多机分布式训练
-
增量训练:
- 先在小样本上训练,再逐步增加数据量
-
使用更高效的序列化格式:
- 考虑将parquet转换为更高效的二进制格式
实施效果
通过上述优化措施,可以显著降低内存使用量:
- 流式数据加载避免了全量数据驻留内存
- 调整训练参数减少了中间数据结构的内存占用
- 内存监控帮助及时发现和处理内存泄漏
总结
处理大规模语料库训练Tokenizer时,内存管理是关键。minimind项目通过优化数据加载方式、调整训练参数和实现内存监控,有效解决了7GB语料训练时的内存问题。这些技术不仅适用于当前项目,也可推广到其他需要处理大规模文本数据的NLP项目中。
对于开发者而言,理解数据流和内存管理的关系,以及掌握相关工具库的特性,是解决此类性能问题的关键能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869