Jackson-core 项目技术文档
本文档将详细介绍如何安装、使用以及配置 Jackson-core 项目,该项目的核心功能是提供低级增量解析器和生成器抽象,并被 Jackson 数据处理器以及多种数据格式处理所用。
1. 安装指南
Maven 安装方式
若使用 Maven 作为构建工具,请将以下依赖项添加到 pom.xml 文件中:
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>${jackson.version.core}</version>
</dependency>
非 Maven 安装方式
如果不使用 Maven,可以从 中央 Maven 仓库 下载相应的 JAR 包。
Jackson 2.10 及以上版本包含 module-info.class 定义,因此 JAR 包也可以作为 Java 模块(JPMS)使用。Jackson 2.12 及以上版本还包括 Gradle 6 模块元数据,以便与 Gradle 版本对齐。
2. 项目使用说明
Jackson-core 提供了创建可重用的 JsonFactory 实例的方法。以下是如何创建和使用 JsonFactory 的示例:
// 2.10 及以上版本支持的构建器风格
JsonFactory factory = JsonFactory.builder()
// 如有需要,进行配置:
.enable(JsonReadFeature.ALLOW_JAVA_COMMENTS)
.build();
// 2.x 版本的老旧机制,仍然受支持
JsonFactory factory = new JsonFactory();
// 如有需要,进行配置:
factory.enable(JsonReadFeature.ALLOW_JAVA_COMMENTS);
如果已经有一个 ObjectMapper 实例(来自 Jackson Databind 包),也可以这样获取 JsonFactory:
JsonFactory factory = objectMapper.getFactory();
简单读取操作
读取操作使用 JsonParser(或其他数据格式的子类)实例进行,该实例由 JsonFactory 创建。
简单写入操作
写入操作使用 JsonGenerator(或其他数据格式的子类)实例进行,该实例也由 JsonFactory 创建。
有关读写操作的更多示例,请参考项目 Wiki 或相关博客文章。
3. 项目 API 使用文档
Jackson-core 的 API 包括但不限于以下几个关键类:
JsonFactory:用于创建JsonParser和JsonGenerator实例。JsonParser:用于读取 JSON 数据。JsonGenerator:用于生成 JSON 数据。
具体的 API 使用方法和详细说明,请参考官方 Javadoc 文档。
4. 项目安装方式
项目的安装方式已在安装指南中说明,以下是简要回顾:
- 使用 Maven 时,通过添加依赖项到
pom.xml。 - 不使用 Maven 时,从中央 Maven 仓库下载 JAR 包。
确保选择与项目需求相匹配的版本。
本文档介绍了如何安装和使用 Jackson-core,以及相关的 API 配置和使用。有关更多详细信息和高级配置,请参考项目的官方文档和社区支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00