Minimind项目中的预训练Batch Size优化实践
2025-05-11 16:55:44作者:邓越浪Henry
在深度学习模型预训练过程中,Batch Size的选择对模型性能有着重要影响。本文以Minimind项目为例,探讨预训练阶段Batch Size的优化策略及其实际效果。
Batch Size的重要性
Batch Size决定了每次参数更新时使用的样本数量。较大的Batch Size能够:
- 提供更稳定的梯度估计
- 充分利用GPU并行计算能力
- 减少训练过程中的随机性
然而,过大的Batch Size也会带来显存占用增加的问题,特别是在资源有限的硬件环境下。
Minimind项目的实践
Minimind项目在预训练阶段最初采用了固定Batch Size为64的设置。经过实验验证,发现当Batch Size从64继续增加时,模型损失函数的收敛下限仅有微弱改善。对于26M参数的模型,最终损失值稳定在2.6-2.8之间。
这一现象表明,当Batch Size达到一定规模后,继续增加对模型性能的提升会逐渐趋于平缓。这与理论预期相符——当Batch Size足够大时,梯度估计已经能够较好地反映真实梯度分布。
梯度累积技术
针对显存受限的环境,Minimind项目引入了梯度累积技术。这种技术通过多次前向传播累积梯度,然后一次性更新参数,实现了"虚拟"增大Batch Size的效果。具体优势包括:
- 允许在有限显存下模拟大Batch Size训练
- 保持训练稳定性
- 不增加额外计算开销
实际应用建议
对于不同规模的模型,Batch Size的选择策略应有所区别:
- 小型模型(如26M参数):Batch Size 64已足够
- 中型模型:可考虑128-256的Batch Size
- 大型模型:建议使用梯度累积技术模拟更大的Batch Size
同时需要注意,随着模型规模增大,Batch Size的边际效益会逐渐降低,此时应综合考虑训练效率和最终性能的平衡。
总结
Minimind项目的实践表明,在预训练过程中,Batch Size的选择需要结合模型规模、硬件条件和性能需求进行综合考量。适度的Batch Size配合梯度累积技术,可以在有限资源下获得良好的训练效果。这一经验对于其他类似规模的预训练任务具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248